High-Pressure Processing Applied to Cooked Sausages: Bacterial Populations during Chilled Storage

2000 ◽  
Vol 63 (8) ◽  
pp. 1093-1099 ◽  
Author(s):  
J. YUSTE ◽  
R. PLA ◽  
M. CAPELLAS ◽  
E. PONCE ◽  
M. MOR-MUR

Vacuum-packaged cooked sausages were pressurized at 500 MPa for 5 or 15 min at mild temperature (65°C) and later stored at 2 and 8°C for 18 weeks. Counts of aerobic mesophiles and psychrotrophs, lactic acid bacteria, enterobacteria, Baird-Parker microbiota, and Listeria spp. were determined 1 day and 3, 6, 9, 12, 15, and 18 weeks after treatment and compared with those of cooked sausages treated at 80 to 85°C for 40 min. Pressurization generated reductions of about 4 log CFU/g in psychrotrophs and lactic acid bacteria. Enterobacteria and Listeria proved the most pressure sensitive; insignificant or no growth was detected throughout the study. Heat treatment inactivated psychrotrophs and enterobacteria similarly to pressure treatment. Listeria monocytogenes and enterotoxigenic Staphylococcus aureus were not found in treated samples. In general, there was no significant difference in counts of any bacterial populations either among treatments or between storage temperatures. High-pressure processing at mild temperature is an effective preservation method that can replace heat pasteurization applied to some cooked meat and poultry products after packaging.

2018 ◽  
Vol 81 (8) ◽  
pp. 1245-1251 ◽  
Author(s):  
S. BALAMURUGAN ◽  
PAWINEE INMANEE ◽  
JAMES DE SOUZA ◽  
PHILIP STRANGE ◽  
TANTAWAN PIRAK ◽  
...  

ABSTRACTThe study investigated the effects of high pressure processing (HPP; 600 MPa for 3 min) and hot water (HW; 75°C for 15 min) pasteurization on the inactivation of inoculated Listeria monocytogenes, natural populations of lactic acid bacteria, Pseudomonas spp., and coliforms in vacuum-packaged cooked sausages and their recovery during storage at 4 and 10°C for 35 days. Cooking sausages to an internal temperature of 72°C resulted in a >6-log reduction in numbers of inoculated L. monocytogenes. Storage at 4°C resulted in no significant difference (P > 0.05) in L. monocytogenes numbers in sausages pasteurized by either HPP or HW compared with unpasteurized control. However, at 10°C, L. monocytogenes numbers in unpasteurized control sausages increased to about 7 log CFU/g by day 35, whereas in HPP-pasteurized sausages, numbers remained below the detection limit for up to 21 days and then increased to 4.5 log CFU/g by day 35. HW pasteurization resulted in inhibition of L monocytogenes to below the detection limit throughout the 35-day storage at 10°C. Natural lactic acid bacteria populations were significantly reduced by HPP and HW pasteurization and continued to be significantly lower at the end of the 35-day storage. Unlike most studies that focus on HPP or HW treatment of postcooking surface contamination of meat with Listeria, this study examined the combined effect of cooking, HPP, and HW on raw meat with a high contamination level. This scenario is important in countries where raw meat supply and in-store refrigeration are a challenge. The results suggest that HPP and HW pasteurization could be used to successfully enhance the safety and shelf life of cooked sausages and that HW pasteurization (75°C) was more effective than HPP (600 MPa) to control L. monocytogenes.


2014 ◽  
Vol 644-650 ◽  
pp. 4671-4676
Author(s):  
Ying Chun Zhu ◽  
Li Zhen Ma ◽  
Yu Jing Tian ◽  
Hua Yang ◽  
Yao Hua Guo ◽  
...  

The objective of this study was to evaluate the use of high pressure processing (HPP) as a preservation method of meat products. Vacuum-packaged fish patties were subjected to HPP (300 MPa for 30 min 15°C or 500 Mpa for 10 min at 15°C). Untreated samples represented the control group. The three groups were stored at 4°C for 0–5 weeks. Color parameters, pH, thiobarbituric (TBARS), bacterial growth, and Oxidation-Reduction Potential (ORP) were determined. The results revealed that the 500-MPa treatment inhibited bacterial growth and extended the shelf-life of fish patties to four weeks with insignificant effects on the physicochemical attributes.


2008 ◽  
Vol 74 (7) ◽  
pp. 1997-2003 ◽  
Author(s):  
Mathieu Millette ◽  
Gilbert Cornut ◽  
Claude Dupont ◽  
François Shareck ◽  
Denis Archambault ◽  
...  

ABSTRACT This study demonstrated the capacity of bacteriocin-producing lactic acid bacteria (LAB) to reduce intestinal colonization by vancomycin-resistant enterococci (VRE) in a mouse model. Lactococcus lactis MM19 and Pediococcus acidilactici MM33 are bacteriocin producers isolated from human feces. The bacteriocin secreted by P. acidilactici is identical to pediocin PA-1/AcH, while PCR analysis demonstrated that L. lactis harbors the nisin Z gene. LAB were acid and bile tolerant when assayed under simulated gastrointestinal conditions. A well diffusion assay using supernatants from LAB demonstrated strong activity against a clinical isolate of VRE. A first in vivo study was done using C57BL/6 mice that received daily intragastric doses of L. lactis MM19, P. acidilactici MM33, P. acidilactici MM33A (a pediocin mutant that had lost its ability to produce pediocin), or phosphate-buffered saline (PBS) for 18 days. This study showed that L. lactis and P. acidilactici MM33A increased the concentrations of total LAB and anaerobes while P. acidilactici MM33 decreased the Enterobacteriaceae populations. A second in vivo study was done using VRE-colonized mice that received the same inocula as those in the previous study for 16 days. In L. lactis-fed mice, fecal VRE levels 1.73 and 2.50 log10 CFU/g lower than those in the PBS group were observed at 1 and 3 days postinfection. In the P. acidilactici MM33-fed mice, no reduction was observed at 1 day postinfection but a reduction of 1.85 log10 CFU/g was measured at 3 days postinfection. Levels of VRE in both groups of mice treated with bacteriocin-producing LAB were undetectable at 6 days postinfection. No significant difference in mice fed the pediocin-negative strain compared to the control group was observed. This is the first demonstration that human L. lactis and P. acidilactici nisin- and pediocin-producing strains can reduce VRE intestinal colonization.


1999 ◽  
Vol 62 (7) ◽  
pp. 773-777 ◽  
Author(s):  
GIANLUIGI MAURIELLO ◽  
MARIA APONTE ◽  
ROSAMARIA ANDOLFI ◽  
GIANCARLO MOSCHETTI ◽  
FRANCESCO VILLANI

Cell survival, cellular damage, and antagonistic activity were investigated after spray-drying of four bacteriocin-producing strains of lactic acid bacteria: Lactococcus lactis subsp. lactis 140, isolated from natural whey culture and producing a narrow-inhibitory spectrum bacteriocin); L. lactis subsp. lactis G35, isolated from pizza dough and producing nisin; Lactobacillus curvatus 32Y and Lactobacillus sp. 8Z, isolated from dry sausages. Trials were performed with bacteria suspended in skimmed milk or directly grown in whey. Three air temperatures at the inlet of the drier (160, 180, and 200°C) and three flow rates (10, 13, and 17 ml/min) were assayed. Cell viability and bacteriocin activity of the dried materials were determined immediately after the process and after 5, 15, 30, and 60 days of storage at 4°C. There was no significant difference between the two feeding suspensions in cell survival, always decreasing with the increase of inlet-air temperature. No loss of bacteriocin activity was detected in reconstituted powders, nor was any loss of ability to produce bacteriocin found after drying. Investigations of sensitivity to NaCl revealed only temporary damage to dried bacteria. During storage for 2 months at 4°C, all samples, but mainly the lactococcal strains, displayed a gradual decrease in cell survival. Bacteriocin activity remained at the same level, allowing powders to be considered as effective biopreservatives.


2019 ◽  
Vol 17 (1) ◽  
pp. 40
Author(s):  
Dian Ratih Laksmitawati ◽  
Umi Marwati ◽  
Vergie Indriani

Low-glycemic indexed foods are increasingly in demand. The glycemic index value is influenced by macronutrient composition. Fermentation can change macronutrient levels of foods. This study aims to analize  the effect of lactic acid bacteria fermentation on macronutrient content (protein, fat, carbohydrate) and glycemic index of suweg (Amorphophallus campanulatus) tuber flour. Tuber were thinly sliced, fermented with 10% lactic acid bacteria T1-2 isolated from previous studies, then incubated at room temperature for 4 days. The fermented tuber was then made into flour. The fermented suweg flour was tested to determine the glycemic index using experimental mice. Macronutrient levels of carbohydrates, fats and proteins are chemically determined. The results showed that during the lactate acid bacteria fermentation process 0-4 days there was an increase of lactat acid bacteria viability from day 0 to day 2 (3,64x108- 20,38x108 cells / ml) and decreased after day 2 (14,63x108- 7,91x108 cells / ml), the total acid count increased (0,2066% -1,2599%) as the pH decreased (5,43-4,37). The determination respectively result of protein, fat and carbohydrate contents of fermented suweg fluor was  7,41%, 0,46% and 0,38% and 6,05%, 0,38% ,  82,15% in non fermented suweg fluor. The glycemic index value of fermented suweg flour was 64,6 and  69,4 in non fermented fluor.  Based on statistical test, macronutrient content (fat, carbohydrate, protein) and glycemic index showed no significant difference between fermented and non fermented suweg fluor (P> 0,05). Fermentation of the lactic acid bacteria on suweg tuber for four days had no effect on the glycemic index and carbohydrate, fat and protein levels on the tubers.


Pro Food ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 673
Author(s):  
Ade Irma Juliana ◽  
Moegiratul Amaro ◽  
Nazaruddin Nazaruddin

ABSTRACT               This study aims to determine the effect of Lactobacillus plantarum bacterial starter concentration on some quality of the porang flour. This study used experimental design one-factor Completely Randomized Design (CRD) consisted of BAL concentration (KB) of Lactobacillus plantarum with 6 treatments which is 0%, 5%, 10%, 15%, 20% and 25%. Each of treatment were repeated three times to obtain 18 unit samples. Data from observations were analyzed using analysis of variance (Analysis of Variance) at 5% significance level using Co-stat software. If there are significant differences, a further Polynomial Orthogonal and Honestly Significant Difference (BNJ) test is performed at a level of 5%. The parameters observed included pH value, protein content, water content, yield, total lactic acid bacteria, organoleptic parameters of color and aroma (hedonic and scoring). The results showed that the concentration of Lactobacillus plantarum bacterial 20% was the best treatment in producing porang flour, pH value 5.72, protein content 6.49%, yield 9.33%, total lactic acid bacteria 6.66 log CFU / g and color rather brown and slightly acidic aroma and somewhat preferred by panelists. Keywords: Porang flour, starter concentration, Lactobacillus plantarum   ABSTRAK             Penelitian ini bertujuan untuk mengetahui pengaruh konsentrasi starter bakteri Lactobacillus plantarum terhadap beberapa komponen mutu tepung porang. Penelitian ini menggunakan Rancangan Acak Lengkap (RAL) dengan satu faktor yakni konsentrasi BAL (KB) jenis Lactobacillus plantarum dengan 6 perlakuan yaitu 0%, 5%, 10%, 15%, 20% dan 25%. Masing-masing perlakuan diulang sebanyak 3 kali sehingga diperoleh 18 unit percobaan. Data hasil pengamatan dianalisis menggunakan analisis keragaman (Analysis of Variance) pada taraf nyata 5% menggunakan software Co-stat. Apabila terdaapat beda nyata, dilakukan uji lanjut Polynomial Orthogonal dan Beda Nyata Jujur (BNJ) pada taraf 5%. Adapun parameter yang diamati meliputi nilai pH, kadar protein, kadar air, rendemen, total bakteri asam laktat, parameter organoleptik warna dan aroma (hedonik dan scoring). Hasil penelitian menunjukkan bahwa konsentrasi strater bakteri Lactobacillus plantarum 20% merupakan perlakuan terbaik dalam menghasilkan tepung porang nilai pH 5,72, kadar protein 6,49%, rendemen 9,33%, total bakteri asam laktat 6,66 log CFU/g serta warna agak coklat dan aroma agak asam serta agak disukai panelis.    Kata Kunci: Tepung porang, konsentrasi starter, Lactobacillus plantarum


Agric ◽  
2019 ◽  
Vol 31 (1) ◽  
pp. 53-66
Author(s):  
Samsul Rizal ◽  
Julfi Restu Amelia ◽  
Suharyono A S

Sinbiotic drinks have a very acidic taste, so it is necessary to add sucrose solution to get the best taste. This study aims to determine the effect of adding 65% (v/v) sucrose solution to changes in antibacterial activity of green grass jelly synbiotic drinks during storage in cold temperatures. The finished green grass jelly synbiotic product was given two different treatments, namely the product without the addition of sucrose solution and product with the addition of 10% (v/v) of 65% (b/v) sucrose solution. The product was stored for 28 days at a cold temperature of ± 10oC. Observations were carried out every 7 days for antibacterial activity, pH, total acid, and total lactic acid bacteria. Antibacterial activity was evaluated using the agar diffusion method against pathogenic bacteria including Staphylococcus aureus, Salmonella sp., Bacillus cereus, and Eschericia coli. The results showed that the antibacterial activity, pH, and total lactic acid bacteria of green grass jelly synbiotic drinks both without and with the addition of 65% (b/v) sucrose as much as 10% (v/v) reduced during storage at cold temperatures, while total acid increases. There was no significant difference between the antibacterial activity and the characteristics of the green grass jelly synbiotic drink given 65% sucrose solution and without the addition of 65% sucrose solution. Thus the study concluded that the addition of 65% sucrose solution to increase the preference for the product did not significantly affect the change in antibacterial activity of the green grass jelly synbiotic beverage during storage in cold temperatures.


2021 ◽  
Vol 31 (4) ◽  
pp. 2
Author(s):  
IDSAP Peramiarti

Diarrhea is defecation with a frequency more often than usual (three times or more) a day (10 mL/kg/day) with a soft or liquid consistency, even in the form of water alone. Pathogenic bacteria, such as Escherichia coli, Salmonella typhimurium, and Shigella sp., play a role in many cases, to which antibiotics are prescribed as the first-line therapy. However, since antibiotic resistance cases are often found, preventive therapies are needed, such as consuming yogurt, which is produced through a fermentation process by lactic acid bacteria (LAB). This research aimed to determine the activity of lactic acid bacteria (Liactobacillus bulgaricus and Streptococcus thermophilus) in yogurt in inhibiting the growth of the pathogenic bacteria E. coli, S. typhimurium, and Shigella sp. The research applied in vitro with the liquid dilution test method and the true experimental design research method with post-test-only and control group design. The design was used to see the inhibitory effect of yogurt LAB on the growth of E. coli, S. typhimurium, and Shigell sp. to compare the effect of several different yogurt concentrations, namely 20%, 40%, 60%, and 80%. The results of the Least Significance Different analysis showed that there was a significant difference between yogurt with a concentration of 0% and that with various concentrations in inhibiting the growth of E. coli, S. typhimurium, and Shigella sp. with a p-value of &lt;0.05. Whereas, there was no significant difference in the various concentrations of yogurt in inhibiting the growth of the three kinds of bacteria with a p-value of &gt; 0.05.<p class="Default" align="center"> </p>


Sign in / Sign up

Export Citation Format

Share Document