scholarly journals Bioremediation of Endosulfan Contaminated Soil by using Microbial Consortia in the Field

2020 ◽  
Vol 42 (11) ◽  
pp. 558-569
Author(s):  
Chan-Ho Park ◽  
Joo-Young Lee ◽  
Min-Ji Cho ◽  
Jinhua Cheng ◽  
Kyu-Jin Yum

Objectives : The use of risky and persistent organochlorine pesticides was prohibited, but is still detected in many agricultural lands. In this study, Phanerochaete chrysosporium Y-2 (KCCM-10725P) and Streptomyces sp. MJM14747 (KACC 81078BP), which were finally selected among various candidate microorganisms, were applied to field soil and estimated the endosulfan removal rate.Methods : The field testing sites were set to an area of 3 m × 3 m, respectively. A 35% endosulfan emulsion was sprayed on both sites so that the final concentration was about 20 µg/g. Thereafter, 12 kg of original sawdust and 12 kg of sawdust loaded with microbial consortia were mixed at each of the two sites. During the test period for a total of 100 days, samples were taken every 30 days. Soil samples were extracted according to the QuEChERS AOAC method and analyzed by gas chromatography.Results and Discussion : The concentrations immediately after endosulfan emulsion treatment at both sites were detected as 21.2 µg/g and 21.9 µg/g, respectively. The removal rate of endosulfan at the site without microbial consortia treatment (Control) was about 21.9% until the 30th day, and 54.4% on the 100th day. On the other hand, the endosulfan removal rate on the 100th day of the site treated with microbial consortia was 89.5%, which was 1.6 times higher than that of the control site. On the 30th day, the removal rate was 56.8%, and the rate of degradation of endosulfan increased thereafter. Among the major components of endosulfan, the removal rate of α-endosulfan was higher than that of β-endosulfan. After 100 days, the removal rates of α-endosulfan and β-endosulfan were 98.0% and 83.5%, respectively.Conclusions : Streptomyces sp. MJM14747 showed good degradation ability in the presence of endosulfan at a high concentration of around 100 µg/g. Moreover, Phanerochaete chrysosporium Y-2 has a good performance in the removal of β-endosulfan, which is slow degrading components of endosulfan. Microbial consortia are expected to be applied not only to domestic and foreign agricultural land but also to overall bioremediation projects.

2014 ◽  
Vol 70 (1) ◽  
pp. 175-181 ◽  
Author(s):  
Danzhao Guo ◽  
Zhicai Zhang ◽  
Dan Liu ◽  
Huihua Zheng ◽  
Hui Chen ◽  
...  

Recently, as an emerging persistent dissolved organic pollutant (DOP), gallic acid (GA) and its efficient decomposition methods have received global attention. The present work aimed to compare the effect of Aspergillus oryzae 5992 and Phanerochaete chrysosporium 40719 on degradation of different concentrations of GA. The A. oryzae grew well and achieved a GA removal rate up to 99% in media containing 1–4% GA, much higher than P. chrysosporium. The activity of laccase and lignin peroxidase excreted by A. oryzae was higher than that by P. chrysosporium in the presence of GA. Based on the results of high-performance liquid chromatography–electrospray ionization–mass spectrometry, three relevant intermediate metabolites were determined as progallin A, methyl gallate, and pyrogallic acid, implying that A. oryzae could not degrade GA unless the carboxyl in the molecule was protected or removed. In view of the ability of A. oryzae to accommodate a high concentration of GA and achieve a high removal rate, as well as the significantly different enzyme activities involved in GA degradation and the underlying mechanisms between the two fungal strains, A. oryzae is proven to be a superior strain for the degradation of DOP.


2020 ◽  
Vol 13 (1) ◽  
pp. 126
Author(s):  
Guozhen Zhang ◽  
Xingxing Huang ◽  
Jinye Ma ◽  
Fuping Wu ◽  
Tianhong Zhou

Electrochemical oxidation technology is an effective technique to treat high-concentration wastewater, which can directly oxidize refractory pollutants into simple inorganic compounds such as H2O and CO2. In this work, two-dimensionally stable anodes, Ti/RuO2-IrO2-SnO2, have been developed in order to degrade organic pollutants from pharmaceutical wastewater. Characterization by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) showed that the oxide coating was successfully fabricated on the Ti plate surface. Electrocatalytic oxidation conditions of high concentration pharmaceutical wastewater was discussed and optimized, and the best results showed that the COD removal rate was 95.92% with the energy consumption was 58.09 kW·h/kgCOD under the electrode distance of 3 cm, current density of 8 mA/cm2, initial pH of 2, and air flow of 18 L/min.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 156
Author(s):  
Manjing Lu ◽  
Jiaqi Wang ◽  
Yuzhong Wang ◽  
Zhengguang He

Chemical synthetic pharmaceutical wastewater has characteristics of high concentration, high toxicity and poor biodegradability, so it is difficult to directly biodegrade. We used acid modified attapulgite (ATP) supported Fe-Mn-Cu polymetallic oxide as catalyst for multi-phase Fenton-like ultraviolet photocatalytic oxidation (photo-Fenton) treatment with actual chemical synthetic pharmaceutical wastewater as the treatment object. The results showed that at the initial pH of 2.0, light distance of 20 cm, and catalyst dosage and hydrogen peroxide concentration of 10.0 g/L and 0.5 mol/L respectively, the COD removal rate of wastewater reached 65% and BOD5/COD increased to 0.387 when the reaction lasted for 180 min. The results of gas chromatography-mass spectrometry (GC-MS) indicated that Fenton-like reaction with Fe-Mn-Cu@ATP had good catalytic potential and significant synergistic effect, and could remove almost all heterocycle compounds well. 3D-EEM (3D electron microscope) fluorescence spectra showed that the fluorescence intensity decreased significantly during catalytic degradation, and the UV humus-like and fulvic acid were effectively removed. The degradation efficiency of the nanocomposite only decreased by 5.8% after repeated use for 6 cycles. It seems appropriate to use this process as a pre-treatment for actual pharmaceutical wastewater to facilitate further biological treatment.


2019 ◽  
Vol 17 (1) ◽  
pp. 1173-1184 ◽  
Author(s):  
Fengyun Tao ◽  
Yangping Liu ◽  
Junliang Chen ◽  
Peng Wang ◽  
Qing Huo

AbstractThe disposal of residues while manufacturing Chinese medicine has always been an issue that concerns pharmaceutical factories. Phanerochaete chrysosporium was inoculated into the residues of Magnolia officinalis for solid-phase fermentation to enzymatically hydrolyze the lignin in the residues and thus to improve the efficiency of removal of the copper ions from residues for the utilization of residues from Chinese medicine. With the increase in activities of lignin-degrading enzymes, especially during the fermentation days 6 to 9, the removal rate of copper ions using M. officinalis residues increased dramatically. The rate of removal reached the maximum on the 14th day and was 3.15 times higher than the initial value. The rate of adsorption of copper ions on the fermentation-modified M. officinalis residues followed the pseudo-second-order kinetics. The adsorption isotherms were consistent with the Freundlich models. The adsorption enthalpy was positive, indicating that it was endothermic and elevation in temperature was favorable to this adsorption process. The adsorption free energy was negative, implying the spontaneity of the process. The copper ions adsorbed could be effectively recovered using 0.2 M hydrochloric acid solution. After five successive cycles of adsorption-regeneration, the fermentation-modified M. officinalis residues exhibited a stable adsorption capacity and greater reusability. The M. officinalis residues fermented with P. chrysosporium are low-cost and environmentally friendly copper ions adsorbent, and this preparation technique realizes the optimum utilization of Chinese medicine residues.


1998 ◽  
Vol 38 (3) ◽  
pp. 95-102 ◽  
Author(s):  
G. Mazzolani ◽  
F. Pirozzi ◽  
G. d'Antonoi

Numerical models for the prediction of turbulent flow field and suspended solid distribution in sedimentation tanks are characterized by refined modeling of hydrodynamics, but apparently weak modeling of settling properties of suspensions. It is known that sedimentation tanks typically treat highly heterodisperse suspensions, whose concentrations range from relatively high to low values. However, settling is modeled either by considering one or more particle classes of different settling velocity, without accounting for hindered settling conditions, or by treating the suspension as monodisperse, even in regions of low concentration. A new generalized settling model is proposed to account for both discrete settling conditions in low concentration regions of the tanks and hindered settling conditions in high concentration regions. Settling velocities of heterodisperse suspensions are then determined as a function of particle velocities in isolation and their total concentration. The settling model is used in the framework of a transport model for the simulation of hydrodynamics and solid distribution in a rectangular sedimentation tank. Results show that solid distribution is mainly affected by particle interactions in the inlet region and by settling properties of individual particles in the outlet region. Comparison of the proposed settling model with other settling models suggests that a generalized approach of the modeling of settling properties of suspensions is a primary concern to obtain reliable predictions of the removal rate.


2021 ◽  
Vol 39 (2A) ◽  
pp. 189-195
Author(s):  
Shaimaa T. Alnasrawy ◽  
Ghayda Y. Alkindi ◽  
Taleb M. Albayati

In this study, the ability of the electrochemical process to remove aqueous high concentration phenol using an electrochemical cell with aluminum anode and cathode was examined. The removal rate of phenol was monitored using different parameters phenol concentration, pH, electrolysis time, current density, and electrode distance. Obtained results indicated that the low removal rates of phenol were observed at both low and high pH. However, the removal rate of phenol increased with an increase in the current density, each electrochemical process conditions need a certain electrodes distance. removal rate of phenol decreased with the increase in the initial phenol concentration. The maximum removal rate of phenol obtained from this study was 82%.


2014 ◽  
Vol 919-921 ◽  
pp. 2149-2152
Author(s):  
Ya Feng Li ◽  
Chun Fei Wei

Using microwave-ferrous sulfate modified activated carbon adsorption manner to remove the high concentration of phosphorus in wastewater. The power of microwavethe concentration of ferrous sulfate and reaction time on phosphorus removal were studied. When the power of microwave was 425W,the concentration of ferrous sulfate was 0.1mol/L,reaction time was 50 min,the removal rate of TP reaches 95.67%,the treated effluent TP can be dropped to 0.48mg/L,the TP can reaches the first effluent standard of TP in the comprehensive wastewater discharge standard (GB8978-1996).Microwave-ferrous sulfate modified activated carbon is adapted to treat high concentration phosphorus in the wastewater.


2005 ◽  
Vol 52 (10-11) ◽  
pp. 335-343 ◽  
Author(s):  
M. Inizan ◽  
A. Freval ◽  
J. Cigana ◽  
J. Meinhold

Aerobic granulation seems to be an a attractive process for COD removal from industrial wastewater, characterised by a high content of soluble organic compounds. In order to evaluate the practical aspects of the process, comparative experimental tests are performed on synthetic and on industrial wastewater, originating from pharmaceutical industry. Two pilot plants are operated as sequencing batch bubble columns. Focus was put on the feasibility of the process for high COD removal and on its operational procedure. For both wastewaters, a rapid formation of aerobic granules is observed along with a high COD removal rate. Granule characteristics are quite similar with respect to the two types of wastewater. It seems that filamentous bacteria are part of the granule structure and that phosphorus precipitation can play an important role in granule formation. For both wastewaters similar removal performances for dissolved biodegradable COD are observed (> 95%). However, a relatively high concentration of suspended solids in the outlet deteriorates the performance with regard to total COD removal. Biomass detachment seems to play a non-negligible role in the current set-up. After a stable operational phase the variation of the pharmaceutical wastewater caused a destabilisation and loss of the granules, despite the control for balanced nutrient supply. The first results with real industrial wastewater demonstrate the feasibility of this innovative process. However, special attention has to be paid to the critical aspects such as granule stability as well as the economic competitiveness, which both will need further investigation and evaluation.


2004 ◽  
Vol 50 (4) ◽  
pp. 283-290 ◽  
Author(s):  
T. Kanagawa ◽  
H.W. Qi ◽  
T. Okubo ◽  
N. Tokura

The exhaust gas from compost processing plants contains a large amount of ammonia. To treat ammonia gas at high loads, bench-scale experiments were carried out. First, nitrifying bacteria were enriched from soil and immobilized on porous ceramics. The ceramics were packed in an acrylic cylinder (diameter, 100 mm; packed height, 190 mm) and ammonia gas was introduced to the top of the cylinder. The concentration and flow rate of ammonia gas were gradually increased and finally 85 ppm was introduced at a space velocity of 800 h-1 (empty bed residence time (EBRT), 4.5 sec). The ammonia load was 1.0 kg N/m3 day-1. The exhaust contained 1.5-2 ppm of ammonia. Then the packed ceramics were transferred to another acrylic cylinder (diameter, 50 mm; packed height, 800 mm). A high concentration of ammonia gas (1,000 ppm) was introduced at a space velocity of 96 h-1 (ammonia loading, 1.44 kg N/m3 day-1; EBRT, 37.5 sec). The exhaust contained 2 ppm of ammonia (removal rate, 99.8%). The packed bed was washed with water intermittently or continuously, and the wastewater from the cylinder contained a large amount of ammonium and nitrate ions of at a 1:1 ratio. Stoichiometric analysis showed that half of the introduced ammonia was oxidized to nitrate, and the rest was converted to ammonium ion. Thus, ammonia gas was effectively treated at a high load by biofiltration with nitrifying bacteria.


2001 ◽  
Vol 61 (3) ◽  
pp. 363-370 ◽  
Author(s):  
A. C. RIETZLER ◽  
A. L. FONSECA ◽  
G. P. LOPES

A great amount of heavy metals enter Pampulha Reservoir via it's main tributaries (Sarandi and Ressaca). Although no water quality classification has been carried out for these tributaries, the reservoir is expected to be in class 2 of the CONAMA-86 system. As part of a monitoring scheme of the Pampulha Watershed, heavy metals (Zn, Pb, Cd, Ni, Cu, Cr, Mn and Fe) were investigated in the water at a control site (considered free from direct human influence) and at potential sites of toxicity and contamination during August (dry season) and November (wet season) of 1998. The results for the first sampling period showed relatively high concentrations of zinc (0.22 mg.L<FONT FACE=Symbol>-</FONT>1) in the upper portion of the reservoir. The highest values of nickel and chromium (0.19 and 0.89 mg.L<FONT FACE=Symbol>-</FONT>1, respectively) were found in the initial portion of the Sarandi Stream, while the highest concentrations of lead (0.05 mg.L<FONT FACE=Symbol>-</FONT>1), cadmium (0.014 mg.L<FONT FACE=Symbol>-</FONT>1), manganese (0.43 mg.L<FONT FACE=Symbol>-</FONT>1) and iron (15.25 mg.L<FONT FACE=Symbol>-</FONT>1) were detected in the Ressaca Stream by the landfill dump of Belo Horizonte. A relatively high concentration of cadmium was also detected at the confluence of the two streams. During the second sampling period, there was an increase in the concentrations of zinc at all sampling sites except the control, with values varying from 0.71 mg.L<FONT FACE=Symbol>-</FONT>1 (the Sarandi Stream) to 2.50 mg.L<FONT FACE=Symbol>-</FONT>1 (the Ressaca Stream). Lead, cadmium, nickel and chromium concentrations were also higher in the Ressaca Stream, but not detected at the other sampling sites. Copper values were higher than in the first period: 0.10 mg.L<FONT FACE=Symbol>-</FONT>1 at the control up to 0.38 mg.L<FONT FACE=Symbol>-</FONT>1 at the confluence of the streams. Similar results were found for manganese and iron, with values reaching up to 19.30 and 125 mg.L<FONT FACE=Symbol>-</FONT>1, respectively. Moreover, all values recorded in the second sampling period were much higher than recommended for class 2 waters. These results emphasize the need for such monitoring in relation to better water quality management of this reservoir.


Sign in / Sign up

Export Citation Format

Share Document