scholarly journals Drought-induced changes in antioxidant system and osmolyte content of poplar cuttings

2020 ◽  
Vol 26 (2) ◽  
Author(s):  
Ružica Ždero Pavlović ◽  
Bojana Blagojević ◽  
Dragana Latković ◽  
Dejan Agić ◽  
Nikola Mićić ◽  
...  

Poplars are widely utilized in the intensive and biomass production, as well as in breeding and environment protection programs. This experiment was performed to investigate the effect of drought stress on poplar clones (M-1, PE19/66 and B-229). Poplar clones were grown hydroponically under controlled conditions and exposed to drought stress by applying polyethylene glycol (PEG) 6000. The plant samples were collected and separated into roots and leaves. For estimation of antioxidant status, activities of different antioxidant enzymes were determined (superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (POD), glutathione peroxidase (GPX), glutathione reductase (GR) and ascorbate peroxidase (APX)), as well as antiradical power (ARP) against hydroxyl (˙OH) radical using ESR spin-trapping. The water stress parameters proline (PRO) content, activity of proline dehydrogenase (PDH) and glycine betaine (GB) content were determined. Drought stress had significant effects on PRO and GB contents, SOD, APX and CAT activities when compared to control. All investigated extracts were determined as good inhibitors for ˙OH radical reduction, especially clone M-1where there was an increase of ARP against ˙OH radical in drought condition what could help to prevent or meliorate oxidative damage. Results indicated that the M-1 clone had a greater accumulation of substances for osmotic adjustment and a more efficient enzymatic detoxification cycle for eliminating the negative effects caused by ROS under drought stress than clones B-229 and PE19/66. This study provides valuable information for understanding drought - responsive mechanisms in leaves and roots of poplar clones M-1, B-229 and PE19/66.  Key words: antioxidant enzymes, climate change, drought, glycine betaine, proline.


2015 ◽  
Vol 80 (4) ◽  
pp. 475-484 ◽  
Author(s):  
Jovana Sucur ◽  
Aleksandra Popovic ◽  
Milos Petrovic ◽  
Goran Anackov ◽  
Vojislava Bursic ◽  
...  

Extensive use of synthetic insecticides, herbicides and other pesticides has negative effects on the environment and on human and animal health. Therefore scientists are turning towards natural pesticides such as active components of plant extracts. Effect of two concentrations (0.1% and 0.2%) of Satureja montana L. aqueous extract on lipid peroxidation process, as well as the activity of the antioxidant enzymes (SOD, GPX, PPX and CAT) in leaves and roots of pepper and black nightshade seedlings were examined 24, 72 and 120h after the treatment. Our results showed that higher concentration of S. montana aqueous extract induced lipid peroxidation in black nightshade roots. Furthermore, significant increases of pyrogallol and guaiacol peroxidase were detected in black nightshade leaves treated with 0.2% S. montana aqueous extract. The second aim was to evaluate effectiveness of aqueous extract as contact toxicant against whitefly. It was observed that aqueous extract with concentration of 0.2% showed toxic effect with 68.33% mortality after 96h.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ramadan Shemi ◽  
Rui Wang ◽  
El-Sayed M. S. Gheith ◽  
Hafiz Athar Hussain ◽  
Saddam Hussain ◽  
...  

AbstractDrought is one of the major environmental stresses that negatively affect the maize (Zea mays L.) growth and production throughout the world. Foliar applications of plant growth regulators, micronutrients or osmoprotectants for stimulating drought-tolerance in plants have been intensively reported. A controlled pot experiment was conducted to study the relative efficacy of salicylic acid (SA), zinc (Zn), and glycine betaine (GB) foliar applications on morphology, chlorophyll contents, relative water content (RWC), gas-exchange attributes, activities of antioxidant enzymes, accumulations of reactive oxygen species (ROS) and osmolytes, and yield attributes of maize plants exposed to two soil water conditions (85% field capacity: well-watered, 50% field capacity: drought stress) during critical growth stages. Drought stress significantly reduced the morphological parameters, yield and its components, RWC, chlorophyll contents, and gas-exchange parameters except for intercellular CO2 concentration, compared with well water conditions. However, the foliar applications considerably enhanced all the above parameters under drought. Drought stress significantly (p < 0.05) increased the hydrogen peroxide and superoxide anion contents, and enhanced the lipid peroxidation rate measured in terms of malonaldehyde (MDA) content. However, ROS and MDA contents were substantially decreased by foliar applications under drought stress. Antioxidant enzymes activity, proline content, and the soluble sugar were increased by foliar treatments under both well-watered and drought-stressed conditions. Overall, the application of GB was the most effective among all compounds to enhance the drought tolerance in maize through reduced levels of ROS, increased activities of antioxidant enzymes and higher accumulation of osmolytes contents.



2017 ◽  
Vol 51 (03) ◽  
Author(s):  
Neha Gupta ◽  
Sanjeev Kaur Thind

A field experiment was conducted to investigate influence of exogenous application of glycine betaine (GB) on performance of wheat under prolonged drought conditions. A set of 19 wheat genotypes differing in stress sensitivity, were sprayed with 100mM GB at maximum tillering and anthesis stage. GB treatment significantly declined the phenological pace under drought stress by increasing days to anthesis. Foliar applied GB improved grains/ spike and thousand grain weight of selected wheat genotypes over stressed ones. The genotype specific response to GB application suggested some threshold optimum level to be necessary for yield improvement under drought stress in susceptible genotypes as compared with tolerant ones. In overall, GB alleviated negative effects of drought stress by a rise in harvest index of most genotypes suggesting its role in assimilate translocation.



Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1822 ◽  
Author(s):  
Lóránt Szőke ◽  
Makoena Joyce Moloi ◽  
Gabriella Enikő Kovács ◽  
Györgyi Biró ◽  
László Radócz ◽  
...  

The main goal of this research was to investigate the effects of corn smut (Ustilago maydis DC. Corda) infection on the morphological (plant height, and stem diameter), and biochemical parameters of Zea mays L. plants. The biochemical parameters included changes in the relative chlorophyll, malondialdehyde (MDA), and photosynthesis pigments’ contents, as well as the activities of antioxidant enzymes—ascorbate peroxidase (APX), guaiacol peroxidase (POD), and superoxide dismutase (SOD). The second aim of this study was to evaluate the impact of phytohormones (auxin, cytokinin, gibberellin, and ethylene) on corn smut-infected plants. The parameters were measured 7 and 11 days after corn smut infection (DACSI). Two hybrids were grown in a greenhouse, one fodder (Armagnac) and one a sweet corn (Desszert 73). The relative and the absolute amount of photosynthetic pigments were significantly lower in the infected plants in both hybrids 11 DACSI. Activities of the antioxidant enzymes and MDA content were higher in both infected hybrids. Auxin, cytokinin, and gibberellin application diminished the negative effects of the corn smut infection (CSI) in the sweet corn hybrid. Phytohormones i.e., auxin, gibberellin, and cytokinin can be a new method in protection against corn smut.



2021 ◽  
Author(s):  
Ramadan Shemi ◽  
Rui Wang ◽  
El-Sayed M.S. Gheith ◽  
Hafiz Athar Hussain ◽  
Linna Cholidah ◽  
...  

Abstract Background: Drought has become a dangerous threat to reduce crop productivity throughout the world. Exogenous application of regulators, micronutrients, or osmoprotectants for inducing drought-tolerance in field crops has been effectively adopted. A controlled pot study was performed to investigate the relative efficacy of salicylic acid (SA), zinc (Zn), and glycine betaine (GB) as foliar applications on the growth, tissues pigments content, relative water content (RWC), leaf gas exchange, antioxidant enzymes activity, reactive oxygen species (ROS) accumulation, osmolytes contents and the yield parameters of wheat plants subjected to two soil water conditions (85% field capacity: well-watered, 50% field capacity: water-deficient) during reproductive growth stages.Results: Water deficient conditions significantly decreased the growth, yield parameters, RWC, photosynthesis pigment, and gas exchange attributes except for intercellular CO2 concentration. However, foliar applications remarkably improved the growth parameters under water deficit conditions. Drought stress statistically increased the contents of hydrogen peroxide (H2O2), superoxide anion radical (O2 •−), and malonaldehyde (MDA), and elevated the harmful oxidation to cell lipids in plants, however, they were considerably reduced by foliar applications. Activities of all antioxidant enzymes, proline content, and soluble sugar were increased in response to foliar applications under water deficit conditions.Conclusions: Overall, foliar application of GB, SA, and Zn compounds improved the drought-tolerance in wheat by decreasing the ROS accumulation, promoting enzymatic antioxidants, and increasing osmolytes accumulation. Finally, GB treatment was most effective in thoroughly assessed parameters of wheat followed by SA and Zn applications to alleviate the adverse effects of drought stress.



Horticulturae ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 588
Author(s):  
Solmaz Najafi ◽  
Hossein Nazari Nasi ◽  
Ruveyde Tuncturk ◽  
Murat Tuncturk ◽  
Riyaz Z. Sayyed ◽  
...  

The effects of mycorrhiza, Thiobacillus and Nitroxin (Azotobacter and Azospirillum sp.) biofertilizers under drought stress conditions with four levels of field capacity (FC) (control(100%), 85%, 70%, and 50%) on the antioxidant enzyme activities of medicinal pumpkin (Cucurbita pepo convar. pepo var. Styriaca) were evaluated during the years 2018–2019. Irrigation levels exhibited significant effects on all studied variables, except for the catalase (CAT) enzyme. A significant correlation was observed between the effects of irrigation levels and biofertilizers on antioxidant enzymes, soluble protein content, and grain yield. The highest activity of catalase and ascorbate peroxidase (APX) enzymes was achieved using mycorrhiza in 50% FC. Increasing drought intensity and mycorrhiza stimulated glutathione reductase (GR) and guaiacol peroxidase (GPX) activities by 32% and 66%, while Nitroxin increased them by 16% and 43%, respectively. Under severe drought stress conditions, only mycorrhiza exhibited a positive effect on GR and GPX enzymes. Under moderate and severe drought stress conditions, Nitroxin increased grain yield by 13% and 12.6%, respectively. The irrigation regimes and bio-fertilizers had a significant effect on β-sitosterol percentage. The highest amount was observed at the highest level of drought stress. Among the various bio-fertilizers treatments, the application of Thiobacillus yielded the highest percentage of β-sitosterol. The results of the present study demonstrate that the application of biofertilizers is beneficial in coping with drought stress.



2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Seyed Morteza Zahedi ◽  
Faezeh Moharrami ◽  
Saadat Sarikhani ◽  
Mohsen Padervand

Abstract Drought is an important environmental stress that has negative effects on plant growth leading to a reduction in yield. In this study, the positive role of nanoparticles of SiO2, Se, and Se/SiO2 (SiO2-NPs, Se-NPs and Se/SiO2-NPs) has been investigated in modulating negative effects of drought on the growth and yield of strawberry plants. Spraying of solutions containing nanoparticles of SiO2, Se, and Se/SiO2 (50 and 100 mg L−1) improved the growth and yield parameters of strawberry plants grown under normal and drought stress conditions (30, 60, and 100%FC). Plants treated with Se/SiO2 (100 mg L−1) preserved more of their photosynthetic pigments compared with other treated plants and presented higher levels of key osmolytes such as carbohydrate and proline. This treatment also increased relative water content (RWC), membrane stability index (MSI) and water use efficiency (WUE). In addition, exogenous spraying of Se/SiO2 increased drought tolerance through increasing the activity of antioxidant enzymes including catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and superoxide dismutase (SOD) as well as decreasing lipid peroxidation and hydrogen peroxide (H2O2) content. Increase in biochemical parameters of fruits such as anthocyanin, total phenolic compounds (TPC), vitamin C and antioxidant activity (DPPH) in strawberry plants treated with Se/SiO2 under drought stress revealed the positive effects of these nanoparticles in improving fruit quality and nutritional value. In general, our results supported the positive effect of the application of selenium and silicon nanoparticles, especially the absolute role of Se/SiO2 (100 mg L−1), on the management of harmful effects of soil drought stress not only in strawberry plants, but also in other agricultural crops.



2017 ◽  
Vol 51 (03) ◽  
Author(s):  
Neha Gupta ◽  
Sanjeev Kaur Thind

<span>A field experiment was conducted to investigate influence of exogenous application of glycine betaine (GB) on performance of wheat under prolonged drought conditions. A set of 19 wheat genotypes differing in stress sensitivity, were sprayed with 100mM GB at maximum tillering and anthesis stage. GB treatment significantly declined the phenological pace under drought stress by increasing days to anthesis. Foliar applied GB improved grains/ spike and thousand grain weight of selected wheat genotypes over stressed ones. The genotype specific response to GB application suggested some threshold optimum level to be necessary for yield improvement under drought stress in susceptible genotypes as compared with tolerant ones. In overall, GB alleviated negative effects of drought stress by a rise in harvest index of most genotypes suggesting its role in assimilate translocation.</span>



2021 ◽  
Author(s):  
Ram Krishna ◽  
Waquar Akhter Ansari ◽  
Durgesh Kumar Jaiswal ◽  
Ram Prasad ◽  
JAY PRAKASH VERMA ◽  
...  

Abstract A large number of genes has been targeted at the molecular level and transferred in tomato varieties from different sources for drought stress tolerance. Developed single transgenic (ST) plants exhibited better yield under drought stress, although the yield was comparatively lower and the plant growth was reduced. Hence, double transgenic plants were developed to improve yield potential without compromising drought tolerance; for this Dehydration Responsive Element Binding protein 1A (AtDREB1A) and Brassica carinata Zinc finger proteins (BcZAT12) genes were stacked. Developed double transgenic (DT) tomato plants by co-over expressing of both the genes exhibited more enzymatic and non-enzymatic antioxidative activities than control. Double transgenic (DZ1-DZ5) tomato lines, co-overexpressing AtDREB1A and BcZAT12 showed enhanced drought tolerance than their counterpart and wild type (WT) plants at 0, 07, 14, and 21 days of water deficit (DWD), respectively. DT plants showed increased activity of antioxidant enzymes, like catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR) and guaiacol peroxidase (POD) and accumulation of non-enzymatic antioxidants like ascorbic acid, glutathione as compared to ST and WT. Additionally, the transcript analysis of antioxidant enzymes revealed the level of gene expression in DT tomato plants. In the present study, co-overexpression of AtDREB1A and BcZAT12 genes in tomato showed superior drought tolerance as compared to ST and WT by elevating activity and quantity of enzymatic and non-enzymatic antioxidants. This is the primary report in tomato, which forms the basis for a multigene transgenic approach to cope with drought stress.



Author(s):  
O. I. Horielova ◽  
◽  
N. I. Ryabchun ◽  
M. A. Shkliarevskyi ◽  
A. M. Reznik ◽  
...  

Along with specific adaptive reactions, universal defense reactions, in particular activation of antioxidant system, are of great importance for plant survival under cold conditions. We have studied a relationship among the content of low-molecular-weight protective compounds with antioxidant properties (proline, soluble carbohydrates, flavonoids), the activity of antioxidant enzymes (superoxide dismutase, catalase, and guaiacol peroxidase) in seedlings of winter wheat, rye and triticale, and frost resistance of etiolated seedlings and adult plants at tillering stage. It was found that there was a fairly close correlation between the frost resistance of seedlings and adult cereal plants (r = 0,78). It was shown that a pronounced relationship between individual indicators of antioxidant system functioning in unhardened seedlings and their frost resistance was not found. After 6-day hardening of seedlings at 2-4°C, there was a high correlation between the total indicator of the enzymatic antioxidant system (the sum of normalized indicators of superoxide dismutase, peroxidase, and catalase activity) and their frost resistance (r = 0,86), but the correlation coefficient of this index with frost resistance of plants in tillering phase was significantly lower (r = 0,47). At the same time, a high correlation was found between the content of low-molecular-weight protectors in hardened seedlings and frost resistance of tillering adult plants (r = 0.89). The closest correlation was observed between the integral normalized indicator, comprising the sum of normalized values of antioxidant enzymes activity and the content of low-molecular-weight protectors in hardened seedlings, and frost resistance of seedlings (r = 0,94) and plants in tillering phase (r = 0,89). A presence of specific features in the functioning of antioxidant system during cold adaptation of cereal seedlings was established. Rye is characterized by a high content of low-molecular-weight protective compounds; at the same time, increased activity of antioxidant enzymes - superoxide dismutase and catalase - was noted in wheat seedlings. In triticale, depending on the genotype, the values of both enzymatic antioxidant activity and the content of low-molecular-weight protectors varied.



Sign in / Sign up

Export Citation Format

Share Document