scholarly journals DESIGN OF ENERGY EFFICIENT HYBRID 1-BIT FULL ADDER FOR ARITHMETIC APPLICATIONS

Author(s):  
Haroon Rasheed S ◽  
Mohan Das S ◽  
Samba Sivudu Gaddam

This paper presents an energy efficient 1-bit full adder designed with a low voltage and high performance internal logic cells which leads to have abridged Power Delay Product (PDP). The customized XNOR and XOR gates, a necessary entity, are also presented. The simulations for the designed circuits performed in cadence virtuoso tool with 45-nm CMOS technology at a supply voltage of 0.9 Volts. The proposed 1-bit adder cell is compared with various trendy adders based on speed, power consumption and energy (PDP). The proposed adder schemes with modified internal entity cells achieve significant savings in terms of delay and energy consumption and which are more than 77% and 40.47% respectively when compared with conventional “C-CMOS” 1-bit full adder and other counter parts.

Author(s):  
Bilal N Md ◽  
Bhaskara Rao K ◽  
Mohan Das S

This This paper presents energy efficient GDI based 1-bit full adder cells with low power consumption and lesser delay with full swing modified basic logic gates to have reduced Power Delay Product (PDP). The various full adders are effectively realized by means of full swing OR, AND and XOR gates with the noteworthy enhancement in their performance. The simulations for the designed circuits performed in cadence virtuoso tool with 45-nm CMOS technologies at a supply voltage of 1 Volts. The proposed 1-bit adder cells are compared with various basic adders based on speed, power consumption and energy (PDP). The proposed adder schemes with full swing basic cells achieve significant savings in terms of delay and energy consumption and which are more than 41% and 32% respectively in comparison to conventional “C-CMOS” 1-bit full adder and other existing adders.


2019 ◽  
Vol 4 (5) ◽  
pp. 575-579
Author(s):  
Gudala Konica . ◽  
Sreenivasulu Mamilla .

As silicon technology scales down, it is a dominant choice to have high-performance digital circuits. As researchers investigated for high-performance digital circuits for future generations, Carbon Nanotube Field Effect Transistors (CNTFETs) is considered as the most promising technology due to their excellent current driving capability and proved to be an alternative to conventional CMOS technology. A CNTFET based energy efficient ternary operators are proposed for scrambling applications. The transistor-level implementations of operators namely Scrambling Operator1 (SOP1), Scrambling Operator2 (SOP2) and SUM operators are simulated with CMOS and CNTFET in 32 nm technology at 0.9 V supply voltage using Synopsys HSPICE. The performance metrics like Power, Delay and Power-delay product (PDP) are measured and a comparative analysis for CNTFET and CMOS technologies is carried out. The results demonstrate that CNTFET designs have better-optimized results in power, energy consumption, and reduced transistor count.


2017 ◽  
Vol 26 (05) ◽  
pp. 1750084 ◽  
Author(s):  
Pankaj Kumar ◽  
Rajender Kumar Sharma

An energy efficient internal logic approach for designing two 1-bit full adder cells is proposed in this work. It is based on decomposition of the full adder logic into the smaller modules. Low power, high speed and smaller area are the main features of the proposed approach. A modified power aware NAND gate, an essential entity, is also presented. The proposed full adder cells achieve 30.13% and improvement in their power delay product (PDP) metrics when compared with the best reported full adder design. Some of the popular adders and proposed adders are designed with cadence virtuoso tool with UMC 90[Formula: see text]nm technology operating at 1.2[Formula: see text]V supply voltage and UMC 55[Formula: see text]nm CMOS technology operating at 1.0[Formula: see text]V. These designs are tested on a common environment. During the experiment, it is also found that the proposed adder cells exhibit excellent signal integrity and driving capability when operated at low voltages.


Author(s):  
Tejaswini M. L ◽  
Aishwarya H ◽  
Akhila M ◽  
B. G. Manasa

The main aim of our work is to achieve low power, high speed design goals. The proposed hybrid adder is designed to meet the requirements of high output swing and minimum power. Performance of hybrid FA in terms of delay, power, and driving capability is largely dependent on the performance of XOR-XNOR circuit. In hybrid FAs maximum power is consumed by XOR-XNOR circuit. In this paper 10T XOR-XNOR is proposed, which provide good driving capabilities and full swing output simultaneously without using any external inverter. The performance of the proposed circuit is measured by simulating it in cadence virtuoso environment using 90-nm CMOS technology. This circuit outperforms its counterparts showing power delay product is reduced than that of available XOR-XNOR modules. Four different full adder designs are proposed utilizing 10T XOR-XNOR, sum and carry modules. The proposed FAs provide improvement in terms of PDP than that of other architectures. To evaluate the performance of proposed full adder circuit, we embedded it in a 4-bit and 8-bit cascaded full adder. Among all FAs two of the proposed FAs provide the best performance for a higher number of bits.


2014 ◽  
Vol 17 (1) ◽  
pp. 62-70
Author(s):  
Khanh Trung Le ◽  
Tu Trong Bui ◽  
Hung Duc Le ◽  
Kha Cong Pham

In the paper, we present a design of a low voltage Operation Amplifier (OPAMP) circuit using split-length transistors. Indirect feedback compensation is an advanced technique used to stabilize the operation of an OPAMP. Cascode transistors are usually implemented for indirect feedback systems. However, these transistors are not suitable for low voltage design. In this study, we have taken advantage of split-length transistors and indirect feedback compensation technique to design a high performance OPAMP. As a result, the OPAMP operates not only at low supply voltage but also at high frequency. The OPAMP has been designed and fabricated in a 0.18um CMOS technology. This OPAMP achieves 100 dB gain, 90 MHz unity gain frequency and 60 degrees phase margin at 2 V supply voltage.


2016 ◽  
Vol 62 (4) ◽  
pp. 329-334 ◽  
Author(s):  
Raushan Kumar ◽  
Sahadev Roy ◽  
C.T. Bhunia

Abstract In this paper, we proposed an efficient full adder circuit using 16 transistors. The proposed high-speed adder circuit is able to operate at very low voltage and maintain the proper output voltage swing and also balance the power consumption and speed. Proposed design is based on CMOS mixed threshold voltage logic (MTVL) and implemented in 180nm CMOS technology. In the proposed technique the most time-consuming and power consuming XOR gates and multiplexer are designed using MTVL scheme. The maximum average power consumed by the proposed circuit is 6.94μW at 1.8V supply voltage and frequency of 500 MHz, which is less than other conventional methods. Power, delay, and area are optimized by using pass transistor logic and verified using the SPICE simulation tool at desired broad frequency range. It is also observed that the proposed design may be successfully utilized in many cases, especially whenever the lowest power consumption and delay are aimed.


2017 ◽  
Vol 27 (03) ◽  
pp. 1850046 ◽  
Author(s):  
Sadulla Shaik ◽  
K. Sri Rama Krishna ◽  
Ramesh Vaddi

Tunnel field-effect transistors (TFETs) as low voltage device options have attracted recent attention for energy efficient circuit designs with CMOS technology scaling. This paper presents the circuit and architectural co-design approach for designing reliable and energy efficient architectures (adder cells) for new computing platforms at supply voltages. At circuit level TFET-based 28-transistor static logic design (28T) and 24-transistor transmission gate logic design (24T) have been explored. At architectural level, multiplexer (MUX)-based 22-transistor full adder design (22T) is proposed. Performance of TFET-based architectures have also been benchmarked with 20[Formula: see text]nm double gate Si FinFET technology. It has been seen that with FinFET technology 24T design is not effective in terms of energy efficiency and reliability (due to the large leakage currents in transmission gate logic topology). 28T design is the best in reliability perspective (in terms of reduced over shoots, full logic swing and reduced glitch duration etc.) and 22T design to be energy efficient option. It has been demonstrated in this paper that TFET’s steep slope characteristics enable the 24T design to have similar reliability characteristics like 28T design and energy efficiency like 22T design. TFET-based 22T design has [Formula: see text]91% smaller energy delay product (EDP) and [Formula: see text]84.4% less power delay product (PDP) in comparison to the low threshold voltage (LVT) FinFET 22T design at 0.2[Formula: see text]V VDD.


VLSI Design ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Subodh Wairya ◽  
Rajendra Kumar Nagaria ◽  
Sudarshan Tiwari

This paper presents a comparative study of high-speed and low-voltage full adder circuits. Our approach is based on hybrid design full adder circuits combined in a single unit. A high performance adder cell using an XOR-XNOR (3T) design style is discussed. This paper also discusses a high-speed conventional full adder design combined with MOSCAP Majority function circuit in one unit to implement a hybrid full adder circuit. Moreover, it presents low-power Majority-function-based 1-bit full addersthat use MOS capacitors (MOSCAP) in its structure. This technique helps in reducing power consumption, propagation delay, and area of digital circuits while maintaining low complexity of logic design. Simulation results illustrate the superiority of the designed adder circuits over the conventional CMOS, TG, and hybrid adder circuits in terms of power, delay, power delay product (PDP), and energy delay product (EDP). Postlayout simulation results illustrate the superiority of the newly designed majority adder circuits against the reported conventional adder circuits. The design is implemented on UMC 0.18 m process models in Cadence Virtuoso Schematic Composer at 1.8 V single-ended supply voltage, and simulations are carried out on Spectre S.


Author(s):  
Basavoju Harish ◽  
M. S. S. Rukmini

In the field of bio medical engineering high performance CPU for digital signal processing plays a significant role. Frequency efficient circuit is a paramount requirement for the portable digital devices employing various digital processors. In this work a novel high speed one-bit 10T full adder with complemented output was described. The circuit was constructed with XOR gates which were built using two CMOS transistors. The XOR gate was constructed using 2T multiplexer circuit style. It was observed that power consumption of the designed circuit at 180nm with supply voltage 1.8V is 183.6 uW and delay was 1.809 ps whereas power consumption at 90nm with supply voltage 1.2V is 25.74 uW and delay was 8.245 ps. The observed Power Delay Product (PDP) in 180nm (at supply voltage 1.8V) is 0.33 and in 90nm (at supply voltage 1.2V) is 0.212. The work was extended by implementing a 32-bit Ripple Carry Adder (RCA) and was found that the delay at 180nm is 93.7ps and at 90nm is 198ps. The results were drawn at 180nm and also 90nm technology using CAD tool. The results say that the present work offered significant enhancement in speed and PDP compared with existing designs.


2017 ◽  
Vol 26 (11) ◽  
pp. 1750180 ◽  
Author(s):  
Leila Safari ◽  
Shahram Minaei

In this paper, a CMOS resistor-based current mirror (RBCM) aimed to be used in low-voltage applications is presented. The main features of the proposed current mirror are very low input voltage requirement (a few mV), low output voltage requirement, high output impedance and simple circuitry. The core structure of the proposed RBCM consists of three transistors (excluding bias circuitry) and two low value grounded resistors. The proposed circuit alleviates the need for cascode structures which are conventionally used to boost the output impedance and linearity. SPICE simulations using 0.18[Formula: see text][Formula: see text]m CMOS technology parameters under supply voltage of 0.9[Formula: see text]V are reported which show input and output voltage requirements of 40[Formula: see text]mV and 0.1[Formula: see text]V respectively, low THD of 1.2%, [Formula: see text] of 496[Formula: see text][Formula: see text], [Formula: see text] of 1[Formula: see text]M[Formula: see text], [Formula: see text]3[Formula: see text]dB bandwidth of 181[Formula: see text]MHz and power dissipation of 154[Formula: see text][Formula: see text]W. A high CMRR differential amplifier and a high performance current difference circuit as applications of the proposed RBCM are given. The proposed RBCM is very useful in tackling restrictions of modern technologies such as reduced supply voltage and transistors low intrinsic output impedance.


Sign in / Sign up

Export Citation Format

Share Document