TEKNOLOGI PENGOLAHAN DAN PEMANFAATAN KARBON AKTIF UNTUK INDUSTRI

2010 ◽  
Vol 2 (2) ◽  
pp. 43
Author(s):  
Effendi Arsad

The  activated carbon is very important  for has  processed product activated carbon.   In south Kalimantan has a big prospects due to the big potential of the raw material provided by the nature and industrial waste. There are a lot of raw materials that can be used for the manufacture of activated carbon such as  agricultural waste, sugarcane waste, waste of sawn timber, lives stock waste and coal  processing waste.Manufacture of activated carbon can be done in  ways: chemical  and physical processes. Activation  is very important in the manufacture of activated carbon in addition to the raw materials used. Activated carbon is charcoal that has undergone changes in chemical properties  and physical properties due to be activated with the activator chemical materials or can by heating at high temperatures, so that absorption , surface area, and the ability to absorb become as very good. Activated carbon is used as an absorbent to absorb heavy metals, in medicine and food, on liquor, petroleum chemical, shrimp farming, the sugar industry of gas purification, catalyst and fertilizer processing.Key wood :  technology  processed, activated carbon

2019 ◽  
Vol 9 (11) ◽  
pp. 2345
Author(s):  
Patryk Król ◽  
Piotr Borysiuk ◽  
Mariusz Mamiński

Raw materials used in particleboard production may have different chemical properties as they have different origins, nature, and storage histories. One of the most important factors is the acidity of the wood which affects the process of bond line formation. Thus, determination of the acid buffering capacity (ABC) of a raw material helps to adjust the optimal amount of hardener in the adhesive. In the present study, three methods for pH-metric ABC determination in the presence of lignocellulosic material were compared. Models that correlate the hardener amount with the internal bonding of particleboards were built from the ABC results. The approach was tested on three materials of different acidity—pine, oak, and ammonia-treated oak. The developed models allowed the prediction of the optimal amount of hardener for the maximized internal bond of the boards. The experimental verification of the models showed a high convergence of the calculated and empirical results.


Author(s):  
Siraj Salman Mohammad ◽  
Renata Oliveira Santos ◽  
Maria Ivone Barbosa ◽  
José Lucena Barbosa Junior

: Anthocyanins are widely spread in different kinds of food, especially fruits and floral tissues, there is an extensive range of anthocyanin compounds reach more than 600 exist in nature. Anthocyanins can be used as antioxidants and raw material for several applications in food and pharmaceutical industry. Consequently, a plenty of studies about anthocyanins sources and extraction methods were reported. Furthermore, many studies about their stability, bioactive and therapeutic properties have been done. According to the body of work, we firstly worked to shed light on anthocyanin properties including chemical, antioxidant and extraction properties. Secondly, we reported the applications and health benefits of anthocyanin including the applications in food processes and anthocyanin characteristics as therapeutic and prophylactic compounds. We reviewed anticancer, anti-diabetic, anti-fatness, oxidative Stress and lipid decreasing and vasoprotective effects of anthocyanins. In conclusion, because the importance of phytochemicals and bioactive compounds the research is still continuing to find new anthocyanins from natural sources and invest them as raw materials in the pharmaceutical and nutrition applications.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2237 ◽  
Author(s):  
P. R. Sarika ◽  
Paul Nancarrow ◽  
Abdulrahman Khansaheb ◽  
Taleb Ibrahim

Phenol–formaldehyde (PF) resin continues to dominate the resin industry more than 100 years after its first synthesis. Its versatile properties such as thermal stability, chemical resistance, fire resistance, and dimensional stability make it a suitable material for a wide range of applications. PF resins have been used in the wood industry as adhesives, in paints and coatings, and in the aerospace, construction, and building industries as composites and foams. Currently, petroleum is the key source of raw materials used in manufacturing PF resin. However, increasing environmental pollution and fossil fuel depletion have driven industries to seek sustainable alternatives to petroleum based raw materials. Over the past decade, researchers have replaced phenol and formaldehyde with sustainable materials such as lignin, tannin, cardanol, hydroxymethylfurfural, and glyoxal to produce bio-based PF resin. Several synthesis modifications are currently under investigation towards improving the properties of bio-based phenolic resin. This review discusses recent developments in the synthesis of PF resins, particularly those created from sustainable raw material substitutes, and modifications applied to the synthetic route in order to improve the mechanical properties.


2021 ◽  
Author(s):  
Anna Ronzano ◽  
Roberta Stefanini ◽  
Giulia Borghesi ◽  
Giuseppe Vignali

"The recovery of agriculture waste is one of the challenges of 2030 Agenda. Food and Agriculture Organization states that 30 % of the world’s agricultural land is used to produce food that is later lost or wasted, and the global carbon footprint corresponds to 7% of total greenhouse gases emissions. Alternatively, natural fibers contained in food and agricultural waste could be a valuable feedstock to reinforce composite biopolymers contributing to increase mechanical properties. In addition, the use of biopolymers matrix could contribute significantly to reduce the environmental footprint of the biobased compounds. Based on these premises, a regional project in Emilia-Romagna, aims to enhance agricultural waste to produce food packaging materials which in turn would contribute to the reduction of green raw materials used. This article reviews the state of art of composite biopolymers added with fillers extracted by food and agricultural waste, analyzing the literature published on scientific databases such as Scopus. The characteristics, advantages and drawbacks of each innovative sustainable material will be studied, trying to compare their various properties. The results of the work could guide companies in the choice of eco-sustainable packaging and lay the foundations for the development of the mentioned regional project."


Cerâmica ◽  
2013 ◽  
Vol 59 (351) ◽  
pp. 473-480 ◽  
Author(s):  
K. C. P. Faria ◽  
J. N. F. Holanda

The sugarcane industry generates huge amounts of sugarcane bagasse ashes (SCBA). This work investigates the incorporation of a SCBA waste as an alternative raw material into a clay body, replacing natural clay material by up to 20 wt.%. Clay ceramic pieces were produced by uniaxial pressing and fired at temperatures varying from 700 to 1100 ºC. The technological properties of the clay ceramic pieces (linear shrinkage, apparent density, water absorption, and tensile strength) as function of the firing temperature and waste addition are investigated. The phase evolution during firing was followed by X-ray diffraction. The results showed that the SCBA waste could be incorporated into red ceramics (bricks and roofing tiles) in partial replacement for natural clay material. These results confirm the feasibility of valorisation of SCBA waste to produce red ceramic. This use of SCBA can also contribute greatly to reducing the environmental problems of the sugarcane industry, and also save the sources of natural raw materials used in the ceramic industry.


Author(s):  
Irina A. Chetvertneva ◽  
Oleg Kh. Karimov ◽  
Galina A. Teptereva ◽  
Natalia S. Tivas ◽  
Eldar M. Movsumzade ◽  
...  

The paper considers the main components and products of wood processing, agricultural waste, pulp and paper industry waste and qualifies them as sources of pentose-containing resource-renewable domestic raw materials. The article describes in detail the structural components of wood as a natural polymer, which contains aromatic and carbohydrate parts. It is noted that these poly-mers are promising as raw materials for the production of useful chemical products. The role of lignin, cellolose and hemicellulose in the design of mechanical and structural properties of wood is considered. The article considers the features of the sulfonation reactions of the lignin monomer unit depending on the pH of the medium: acidic, neutral and alkaline. There are three main reac-tions that occur simultaneously with lignin in the process of wood delignification during sulfite cooking, such as the sulfonation reaction, the hydrolytic destruction reaction, and the condensation reaction. It is shown that the lignin-hemicellulose matrix contains three types of interconnected mesh structures: the lignin itself; a network of covalent bonds of lignin with hemicelluloses, and a network whose structure is obtained due to the hydrogen bond and the forces of the physical inter-action of lignin and hemicelluloses. The features of chemical transformations of the monomeric aromatic link of lignosulfonate – phenylpropane unit in the processes of wood delignification, the main chemical reactions of wood raw material delignification under the conditions of sulfite and neutral-sulfite brews are shown. The method of quantitative determination of monosaccharides in the composition of the carbohydrate part is proposed.


2021 ◽  
Vol 72 ◽  
pp. 215-222
Author(s):  
Mohanad R.A. Al-Owaidi ◽  
◽  
Mohammed L. Hussein ◽  
Ruaa Issa Muslim ◽  
◽  
...  

The Portland cement industry is one of the strategic industries in any country. The basis of an industry success is the availability of raw materials and, the low extraction in addition to transportation costs. The Bahr Al-Najaf region is abundant with limestone rocks but lacks primary gypsum. An investigation had been carried out to identify the source of secondary gypsum as an alternative to primary gypsum. Twelve boreholes were drilled for a depth of 2 m, as the thickness of suitable secondary gypsum layer ranges from 1 to 1.5 m. The mineralogical study revealed the predominance of gypsum followed by quartz and calcite, with an average of 62.9%, 19.6% and 14.35%, respectively. The geochemical analysis revealed that the content of SO3 is appropriate and ranging from 41.92% to 32.89% with an average of 37.73%. The SO3 content is within an acceptable range. The mean abundance of the major oxides of the study area may be arranged as SO3 > CaO> SiO2> MgO> Al2O> Fe2O3. The insoluble residue was at an acceptable rate. The laboratory experiments for milling secondary gypsum with clinker has successfully proven the production of Portland cement that matches the limits of the Iraqi Quality Standard (IQS) No. 5 of 1984. Great care must be taken when using secondary gypsum; secondary gypsum must be mixed well to maintain the chemical properties before blending with clinker and utilizing in the cement mill in the cement plant.


Author(s):  
Patrick Degryse ◽  
Dennis Braekmans

Petrography has developed into an indispensable tool for ceramic fabric analysis, specifically studying the mineralogical and textural composition of ceramic objects. Petrography is a technique commonly used in geology to describe and classify rocks. Ceramic petrography studies clay-based archaeological or historical materials. Using a polarizing light microscope (PLM) in ceramic studies, the different raw materials used to make a ceramic object can be identified, ranging from clays and other minerals to rock fragments and inorganic or organic temper. The technique moreover feeds into the study of raw material provenance and origin, and is able to discern the different technological procedures followed to make the ceramic object (from shaping to firing), next to providing clues on the function of the object. This information not only helps reconstruct trade and exchange of raw materials and ceramics, but aids in reconstructing society behind the pot.


Author(s):  
Asep Bayu Dani Nandiyanto ◽  
Nissa Nur Azizah ◽  
Gabriela Chelvina Santiuly Girsang

Corncob is usually disposed of directly as waste, creating problems in the environment, while it can be converted into valuable materials. This research aimed to evaluate the literature review on briquette production from agricultural waste (using non-binder and cold press with a binder) and the current works on techno-economic analysis, to propose an optimal design for the production of briquette from corncob waste, and to perform a techno-economic analysis based on the selected optimal processing method. The engineering perspective based on stoichiometry and mass balance showed the potential corncob briquette manufacture in both home and large scales due to the possible use of inexpensive and commercially available equipment and raw materials. The economic perspective [based on several economic evaluation factors (i.e., gross profit margin, payback period, break-even point, cumulative net present value, return of investment, internal rate return, and profitability index) under ideal and non-ideal conditions by considering internal (i.e., sales, raw materials, utilities, and variable cost) and external aspects (i.e., tax)] confirmed the prospective development of the project in the large-scale production with a lifetime of more than 18 years. The main issue in the project is the raw material (i.e. tapioca flour), giving the most impact on the project’s feasibility. Even in severe conditions, the project is feasible. The great endurance was also confirmed in the case of a higher tax rate. This study demonstrates the importance of producing corncob-based briquettes for improving the economic value and giving alternatives for problem solvers in the utilization of agricultural waste.


2020 ◽  
Vol 142 ◽  
pp. 02003 ◽  
Author(s):  
Retno Utami Hatmi ◽  
Erni Apriyati ◽  
Nurdeana Cahyaningrum

Edible coating is one form of packaging technology with environmentally friendly theme. The raw materials of edible coating derived from nature, while the waste is decomposed or even zero waste. The research of edible coating using experimental design RAL (completely randomized design) with two factors, namely the type of raw material used tuber starch (cassava, arrowroot and canna) and the percentage of starch (3%, 4% and 5%) (b/v) with three replications time. The quality analisys of edible coating includes the physical properties (thickness (mm), tensile strength (N) and elongation (mm)) and chemical properties (moisture content (%), solubility (%), the water vapor transmissin rate (g/hour) and peroxide (mek/kg). The research showed that the edible coating with sorbitol plasticizer of arrowroot starch 4% provide best physicochemical properties (thickness 0,09mm; 1,63N tensile strength; elongation 84,38mm; water content of 11.19%; solubility of 31.40%; the transfer of water vapor 0,16g / h and 3,20mek/ kg).


Sign in / Sign up

Export Citation Format

Share Document