scholarly journals Cold oceans enhance terrestrial new-particle formation in near-coastal forests

2009 ◽  
Vol 9 (22) ◽  
pp. 8639-8650 ◽  
Author(s):  
T. Suni ◽  
L. Sogacheva ◽  
J. Lauros ◽  
H. Hakola ◽  
J. Bäck ◽  
...  

Abstract. The world's forests produce atmospheric aerosol by emitting volatile organic compounds (VOC) which, after being oxidized in the atmosphere, readily condense on the omnipresent nanometer-sized nuclei and grow them to climatically relevant sizes. The cooling effect of aerosols is the greatest uncertainty in current climate models and estimates of radiative forcing. Therefore, identifying the environmental factors influencing the biogenic formation of aerosols is crucial. In this paper, we connected biogenic aerosol formation events observed in a Eucalypt forest in South-East Australia during July 2005–December 2006 to air mass history using 96-h back trajectories. Formation of new particles was most frequent in the dry westerly and south-westerly air masses. According to NDVI (Normalized Difference Vegetation Index) measurements, photosynthesis was not significantly higher in this direction compared to the north-east direction. It is unlikely, therefore, that differences in photosynthesis-derived organic precursor emissions would have been significant enough to lead to the clear difference in NPF frequency between these two directions. Instead, the high evaporation rates above the Pacific Ocean resulted in humid winds from the north-east that effectively suppressed new-particle formation in the forest hundreds of kilometers inland. No other factor varied as significantly in tune with new-particle formation as humidity and we concluded that, in addition to local meteorological factors in the forest, the magnitude of evaporation from oceans hundreds of kilometers upwind can effectively suppress or enhance new-particle formation. Our findings indicate that, unlike warm waters, the cold polar oceans provide excellent clean and dry background air that enhances aerosol formation above near-coastal forests in Fennoscandia and South-East Australia.

2009 ◽  
Vol 9 (3) ◽  
pp. 13093-13122
Author(s):  
T. Suni ◽  
L. Sogacheva ◽  
J. Lauros ◽  
H. Hakola ◽  
J. Bäck ◽  
...  

Abstract. The world's forests produce atmospheric aerosol by emitting volatile organic compounds (VOC) which, after being oxidized in the atmosphere, readily condense on the omnipresent nanometer-sized nuclei and grow them to climatically relevant sizes. The cooling effect of aerosols is the greatest uncertainty in current climate models and estimates of radiative forcing. Therefore, identifying the environmental factors influencing the biogenic formation of aerosols is crucial. We show that, in addition to local meteorological factors in the forest, the magnitude of evaporation from oceans hundreds of kilometers upwind can effectively suppress or enhance new-particle formation. Our findings indicate that, unlike warm waters, the cold polar oceans provide excellent clean and dry background air that enhances aerosol formation above near-coastal forests in Fennoscandia and South-East Australia.


2013 ◽  
Vol 13 (24) ◽  
pp. 12495-12506 ◽  
Author(s):  
Z. B. Wang ◽  
M. Hu ◽  
J. Y. Sun ◽  
Z. J. Wu ◽  
D. L. Yue ◽  
...  

Abstract. Long-term measurements of particle number size distributions were carried out both at an urban background site (Peking University, PKU) and a regional Global Atmospheric Watch station (Shangdianzi, SDZ) from March to November in 2008. In total, 52 new particle formation (NPF) events were observed simultaneously at both sites, indicating that this is a regional phenomenon in the North China Plain. On average, the mean condensation sink value before the nucleation events started was 0.025 s−1 in the urban environment, which was 1.6 times higher than that at regional site. However, higher particle formation and growth rates were observed at PKU (10.8 cm−3 s−1 and 5.2 nm h−1) compared with those at SDZ (4.9 cm−3 s−1 and 4.0 nm h−1). These results implied that precursors were much more abundant in the polluted urban environment. Different from the observations in cleaner environments, the background conditions of the observed particle homogeneous nucleation events in the North China Plain could be characterized as the co-existing of a stronger source of precursor gases and a higher condensational sink of pre-existing aerosol particles. Secondary aerosol formation following nucleation events results in an increase of particle mass concentration, particle light scattering coefficient, and cloud condensation nuclei (CCN) number concentration, with consequences on visibility, radiative effects, and air quality. Typical regional NPF events with significant particle nucleation rates and subsequent particle growth over a sufficiently long time period at both sites were chosen to investigate the influence of NPF on the number concentration of "potential" CCN. As a result, the NPF and the subsequent condensable growth increased the CCN number concentration in the North China Plain by factors in the range from 5.6 to 8.7. Moreover, the potential contribution of anthropogenic emissions to the CCN number concentration was more than 50%, to which more attention should be drawn in regional and global climate modeling, especially in the polluted urban areas.


2018 ◽  
Author(s):  
Vyoma Singla ◽  
Subrata Mukherjee ◽  
Adam Kristensson ◽  
Govindan Pandithurai ◽  
Kundan K. Dani ◽  
...  

Abstract. There is a lack of characterization of the aerosol population in Western India, how it is affected by meteorological parameters, and new particle formation and the influence on cloud condensation nuclei (CCN). For this reason, measurements of particle number size distribution, aerosol chemical composition, meteorology and cloud condensation nuclei number concentration were monitored at High Altitude Cloud Physics Laboratory (HACPL) in Mahabaleshwar mountain town in Western India between November 2016 and February 2017. Most air masses in this period originated from the Indian continent to the north-east of HACPL. New particle formation (NPF) events were observed on 47 days and mainly associated with these north-easterly air masses and high SO2 emissions and biomass burning activities, while weaker or non-NPF days were associated with westerly air masses and relatively higher influence of local air pollution. The growth of newly formed particles enhanced the mass concentration of secondary organic and inorganic species of aerosol particles. The mean growth rate, formation rate, condensation sink and coagulation loss for the 13 strongest events was found to be 2.58 ± 0.38 nm h−1, 2.82 ± 1.37 cm−3 s−1, 22.3 ± 2.87 * 10-3 s−1 and 1.62 ± 1.04 cm−3 s−1 respectively. A closer examination of 5 events showed that low relative humidity and solar radiation favoured new particle formation. These NPF events lead to a significant increase in CCN concentration (mean ~ 53 ± 36 %). The NanoMap method revealed that NPF took place up to several hundred kilometers upwind and to the north-east of HACPL.


2013 ◽  
Vol 64 ◽  
pp. 77-84 ◽  
Author(s):  
Yuemei Han ◽  
Yoko Iwamoto ◽  
Tomoki Nakayama ◽  
Kimitaka Kawamura ◽  
Tareq Hussein ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jeremy M. Klavans ◽  
Mark A. Cane ◽  
Amy C. Clement ◽  
Lisa N. Murphy

AbstractThe North Atlantic Oscillation (NAO) is predictable in climate models at near-decadal timescales. Predictive skill derives from ocean initialization, which can capture variability internal to the climate system, and from external radiative forcing. Herein, we show that predictive skill for the NAO in a very large uninitialized multi-model ensemble is commensurate with previously reported skill from a state-of-the-art initialized prediction system. The uninitialized ensemble and initialized prediction system produce similar levels of skill for northern European precipitation and North Atlantic SSTs. Identifying these predictable components becomes possible in a very large ensemble, confirming the erroneously low signal-to-noise ratio previously identified in both initialized and uninitialized climate models. Though the results here imply that external radiative forcing is a major source of predictive skill for the NAO, they also indicate that ocean initialization may be important for particular NAO events (the mid-1990s strong positive NAO), and, as previously suggested, in certain ocean regions such as the subpolar North Atlantic ocean. Overall, we suggest that improving climate models’ response to external radiative forcing may help resolve the known signal-to-noise error in climate models.


2021 ◽  
Author(s):  
Maija Peltola ◽  
Manon Rocco ◽  
Neill Barr ◽  
Erin Dunne ◽  
James Harnwell ◽  
...  

<p>Even though oceans cover over 70% of the Earth’s surface, the ways in which oceans interact with climate are not fully known. Marine micro-organisms such as phytoplankton can play an important role in regulating climate by releasing different chemical species into air. In air these chemical species can react and form new aerosol particles. If grown to large enough sizes, aerosols can influence climate by acting as cloud condensation nuclei which influence the formation and properties of clouds. Even though a connection of marine biology and climate through aerosol formation was first proposed already over 30 years ago, the processes related to this connection are still uncertain.</p><p>To unravel how seawater properties affect aerosol formation and to identify which chemical species are responsible for aerosol formation, we built two Air-Sea-Interaction Tanks (ASIT) that isolate 1000 l of seawater and 1000 l of air directly above the water. The used seawater was collected from different locations during a ship campaign on board the R/V Tangaroa in the South West Pacific Ocean, close to Chatham Rise, east of New Zealand. Seawater from one location was kept in the tanks for 2-3 days and then changed. By using seawater collected from different locations, we could obtain water with different biological populations. To monitor the seawater, we took daily samples to determine its chemical and biological properties.</p><p>The air in the tanks was continuously flushed with particle filtered air. This way the air had on average 40 min to interact with the seawater surface before being sampled. Our air sampling was continuous and consisted of aerosol and air chemistry measurements. The instrumentation included measurements of aerosol number concentration from 1 to 500 nm and  chemical species ranging from ozone and sulphur dioxide to volatile organic compounds and chemical composition of molecular clusters.</p><p>Joining the seawater and atmospheric data together can give us an idea of what chemical species are emitted from the water into the atmosphere and whether these species can form new aerosol particles. Our preliminary results show a small number of particles in the freshly nucleated size range of 1-3 nm in the ASIT headspaces, indicating that new aerosol particles can form in the ASIT headspaces. In this presentation, we will also explore which chemical species could be responsible for aerosol formation and which plankton groups could be related to the emissions of these species. Combining these results with ambient data and modelling work can shed light on how important new particle formation from marine sources is for climate.</p><p>Acknowledgements: Sea2Cloud project is funded by European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 771369).</p>


2021 ◽  
Author(s):  
Haddad Amar ◽  
Beldjazia Amina ◽  
Kadi Zahia ◽  
Redjaimia Lilia ◽  
Rached-Kanouni Malika

Mediterranean ecosystems are considered particularly sensitive to climate change. Any change in climatic factors affects the structure and functioning of these ecosystems and has an influence on plant productivity. The main objective of this work is to characterize one of the Mediterranean ecosystems; the Chettaba forest massif (located in the North-East of Algeria) from a vegetation point of view and their link with monthly variations using Landsat 8 satellite images from five different dates (June 25, 2017, July 27, 2017, August 28, 2017, October 15, 2017). The comparison of NDVI values in Aleppo pine trees was performed using analysis of variance and the use of Friedman's non-parametric test. The Mann-Kendall statistical method was applied to the monthly distribution of NDVI values to detect any trends in the data over the study period. The statistical results of NDVI of Aleppo pine trees indicate that the maximum value is recorded in the month of June, while the lowest values are observed in the month of August where the species studied is exposed to periods of thermal stress.


2019 ◽  
Vol 11 (17) ◽  
pp. 2019 ◽  
Author(s):  
Sergio Fagherazzi ◽  
Giovanna Nordio ◽  
Keila Munz ◽  
Daniele Catucci ◽  
William S. Kearney

Retreat of coastal forests in relation to sea level rise has been widely documented. Recent work indicates that coastal forests on the Delmarva Peninsula, United States, can be differentiated into persistence and regenerative zones as a function of sea-level rise and storm events. In the lower persistence zone trees cannot regenerate because of frequent flooding and high soil salinity. This study aims to verify the existence of these zones using spectral remote sensing data, and determine whether the effect of large storm events that cause damage to these forests can be detected from satellite images. Spectral analysis confirms a significant difference in average Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) values in the proposed persistence and regenerative zones. Both NDVI and NDWI indexes decrease after storms triggering a surge above 1.3 m with respect to the North American Vertical Datum of 1988 (NAVD88). NDWI values decrease more, suggesting that this index is better suited to detect the effect of hurricanes on coastal forests. In the regenerative zone, both NDVI and NDWI values recover three years after a storm, while in the persistence zone the NDVI and NDWI values keep decreasing, possibly due to sea level rise causing vegetation stress. As a result, the forest resilience to storms in the persistence zone is lower than in the regenerative zone. Our findings corroborate the ecological ratchet model of coastal forest disturbance.


2017 ◽  
Vol 30 (16) ◽  
pp. 6585-6589 ◽  
Author(s):  
Bjorn Stevens ◽  
Stephanie Fiedler

Kretzschmar et al., in a comment in 2017, use the spread in the output of aerosol–climate models to argue that the models refute the hypothesis (presented in a paper by Stevens in 2015) that for the mid-twentieth-century warming to be consistent with observations, then the present-day aerosol forcing, [Formula: see text] must be less negative than −1 W m−2. The main point of contention is the nature of the relationship between global SO2 emissions and [Formula: see text] In contrast to the concave (log-linear) relationship used by Stevens and in earlier studies, whereby [Formula: see text] becomes progressively less sensitive to SO2 emissions, some models suggest a convex relationship, which would imply a less negative lower bound. The model that best exemplifies this difference, and that is most clearly in conflict with the hypothesis of Stevens, does so because of an implausible aerosol response to the initial rise in anthropogenic aerosol precursor emissions in East and South Asia—already in 1975 this model’s clear-sky reflectance from anthropogenic aerosol over the North Pacific exceeds present-day estimates of the clear-sky reflectance by the total aerosol. The authors perform experiments using a new (observationally constrained) climatology of anthropogenic aerosols to further show that the effects of changing patterns of aerosol and aerosol precursor emissions during the late twentieth century have, for the same global emissions, relatively little effect on [Formula: see text] These findings suggest that the behavior Kretzschmar et al. identify as being in conflict with the lower bound in Stevens arises from an implausible relationship between SO2 emissions and [Formula: see text] and thus provides little basis for revising this lower bound.


2010 ◽  
Vol 10 (14) ◽  
pp. 6721-6735 ◽  
Author(s):  
S. Crumeyrolle ◽  
H. E. Manninen ◽  
K. Sellegri ◽  
G. Roberts ◽  
L. Gomes ◽  
...  

Abstract. Aerosol properties were studied during an intensive airborne measurement campaign that took place at Rotterdam in Netherlands in May 2008 within the framework of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). The objective of this study is to illustrate seven events of new particle formation (NPF) observed with two Condensation Particle Counters (CPCs) operated on board the ATR-42 research aircraft in airsectors around Rotterdam, and to provide information on the spatial extent of the new particle formation phenomenon based on 1-s resolution measurements of ultra-fine particle (in the size range 3–10 nm diameter, denoted N3-10 hereafter) concentrations. The results show that particle production occurred under the influence of different air mass origins, at different day times and over the North Sea as well as over the continent. The number concentration of freshly nucleated particles (N3-10) varied between 5000 and 100 000 cm−3 within the boundary layer (BL). Furthermore the vertical extension for all nucleation events observed on the ATR-42 never exceeded the upper limit of the BL. The horizontal extent of N3-10 could not be delimited due to inflexible flight plans which could not be modified to accommodate real-time results. However, the NPF events were observed over geographically large areas; typically the horizontal extension was about 100 km and larger.


Sign in / Sign up

Export Citation Format

Share Document