Nuclear techniques for surveillance and monitoring of antimicrobial and antimicrobial resistance in soil and the environment

Author(s):  
Michael Seidel ◽  
Lisa Göpfert ◽  
Martin Elsner ◽  
Ivonne Nijenhuis ◽  
Joseph Adu-Gyamfi ◽  
...  

<p>Antimicrobials (AM) play a critical role in the treatment of human and animal (aquatic and terrestrial) diseases, which has led to their widespread application and use. Antimicrobial resistance (AMR) is the ability of microorganisms (e.g. bacteria, viruses and some parasites) to stop an antibiotic, such as an antimicrobial, antiviral or antimalarial, from working against them. Globally, about 700 000 deaths per year arise from resistant infections as a result of the fact that antimicrobial drugs have become less effective at killing resistant pathogens. Antimicrobial chemicals that are present in environmental compartments can trigger the development of AMR. These chemicals can also cause antibiotic-resistant bacteria (ARB) to further spread antibiotic resistance genes (ARG) because they may have an evolutionary advantage over non-resistant bacteria. Thus, AMR is a global threat to health, livelihoods and the achievement of the Sustainable Development Goals, both in developing and developed countries. For some time now, antimicrobial resistance (AMR) has been approached mainly from the human and animal health angles, however little is known about the impacts that AMR in the environment may have on health. A better understanding of how antimicrobial resistance moves from agricultural areas to the environment through soil and water is important if we are to develop guidance to managing it cost effectively. We examined the potential of nuclear techniques—the application of compound-specific stable isotope analysis (CSIA)—as a powerful tool to determine the source and fate of antibiotics in the environment and detect the degradation of antibiotics by transformation-induced isotopic effects. CSIA can be used to qualify and quantify in situ transformations. The latest methodological advances even allow the analysis of several elements (H, C, Cl, N) within a molecule This multi-element isotope information is used to elucidate in-situ transformation pathways and underlying reaction mechanisms.</p>

2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Peter Collignon ◽  
John J Beggs

Abstract Antimicrobial resistance (AMR) is affected by many factors, but too much of our focus has been on antimicrobial usage. The major factor that drives resistance rates globally is spread. The COVID-19 pandemic should lead to improved infection prevention and control practices, both in healthcare facilities and the community. COVID-19 will also have ongoing and profound effects on local, national and international travel. All these factors should lead to a decrease in the spread of resistant bacteria. So overall, COVID-19 should lead to a fall in resistance rates seen in many countries. For this debate we show why, overall, COVID-19 will not result in increased AMR prevalence. But globally, changes in AMR rates will not be uniform. In wealthier and developed countries, resistance rates will likely decrease, but in many other countries there are already too many factors associated with poor controls on the spread of bacteria and viruses (e.g. poor water and sanitation, poor public health, corrupt government, inadequate housing, etc.). In these countries, if economies and governance deteriorate further, we might see even more transmission of resistant bacteria.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Yasmin Neves Vieira Sabino ◽  
Mateus Ferreira Santana ◽  
Linda Boniface Oyama ◽  
Fernanda Godoy Santos ◽  
Ana Júlia Silva Moreira ◽  
...  

AbstractInfections caused by multidrug resistant bacteria represent a therapeutic challenge both in clinical settings and in livestock production, but the prevalence of antibiotic resistance genes among the species of bacteria that colonize the gastrointestinal tract of ruminants is not well characterized. Here, we investigate the resistome of 435 ruminal microbial genomes in silico and confirm representative phenotypes in vitro. We find a high abundance of genes encoding tetracycline resistance and evidence that the tet(W) gene is under positive selective pressure. Our findings reveal that tet(W) is located in a novel integrative and conjugative element in several ruminal bacterial genomes. Analyses of rumen microbial metatranscriptomes confirm the expression of the most abundant antibiotic resistance genes. Our data provide insight into antibiotic resistange gene profiles of the main species of ruminal bacteria and reveal the potential role of mobile genetic elements in shaping the resistome of the rumen microbiome, with implications for human and animal health.


2011 ◽  
Vol 27 (3) ◽  
pp. 1321-1328
Author(s):  
J. Petrovic ◽  
I. Stojanov ◽  
D. Milanov ◽  
M. Kapetanov

Antimicrobial resistance is a daunting public health threat impacting both human and animal health and it is a cause for concern wherever antimicrobial agents are in use. The usage of antimicrobial drugs in food producing animals could results in significant food safety issue - antimicrobial resistance among zoonotic bacteria in these animals. Resistance monitoring program still does not exist in Serbia, so we made a pilot program to screen the situation in our abattoirs. We found similar situation like the one in EU. The resistance to one or more antimicrobial drugs was found in 40.00% and 75.32% Campylobacter spp. strains isolated from poultry and pig carcasses, respectively. Fluoroquinolones are anitmicrobial drugs which, beside beta-lactams, are most often used in poultry breeding. Fluoroquinolones are also very important for treatment of some human diseases. We examined relationship between presence of fluoroquinolone resistant C. jejuni in poultry carcasses and fluoroquinolone treatment of poultry. Treatment with one of this antimicrobials - enrofloxacine selects resistant strains in chickens carcasses, C. jejuni strains resistant to enrofloxacine were isolated from all livers (100%) and 70% carcasses. The resistant bacteria may then be transmitted to humans through food supply and increase the risk of treatment failures. Resistant zoonotic pathogens in food have to be controlled through a complete, continuous farm-to-fork system.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Daniel Schar ◽  
Cheng Zhao ◽  
Yu Wang ◽  
D. G. Joakim Larsson ◽  
Marius Gilbert ◽  
...  

AbstractAntimicrobial resistance (AMR) is a growing threat to human and animal health. However, in aquatic animals—the fastest growing food animal sector globally—AMR trends are seldom documented, particularly in Asia, which contributes two-thirds of global food fish production. Here, we present a systematic review and meta-analysis of 749 point prevalence surveys reporting antibiotic-resistant bacteria from aquatic food animals in Asia, extracted from 343 articles published in 2000–2019. We find concerning levels of resistance to medically important antimicrobials in foodborne pathogens. In aquaculture, the percentage of antimicrobial compounds per survey with resistance exceeding 50% (P50) plateaued at 33% [95% confidence interval (CI) 28 to 37%] between 2000 and 2018. In fisheries, P50 decreased from 52% [95% CI 39 to 65%] to 22% [95% CI 14 to 30%]. We map AMR at 10-kilometer resolution, finding resistance hotspots along Asia’s major river systems and coastal waters of China and India. Regions benefitting most from future surveillance efforts are eastern China and India. Scaling up surveillance to strengthen epidemiological evidence on AMR and inform aquaculture and fisheries interventions is needed to mitigate the impact of AMR globally.


Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 493
Author(s):  
Reem A. Youssef ◽  
Ahmad M. Abbas ◽  
Ahmed M. El-Shehawi ◽  
Mona I. Mabrouk ◽  
Khaled M. Aboshanab

A total of 300 human fecal samples were collected from febrile neutropenic patients suffering from severe gastroenteritis, followed by identification and serological characterization of recovered isolates. Fifty nontyphoidal Salmonella (NTS) serovars were recovered. A total of serologically identified 50 NTS serovars recovered from poultry of the same geographical area and during the same period as well as one standard strain S. Poona were supplied by the Bacterial Bank of Animal Health Research Institute of Egypt. Antibiogram analysis revealed that the human and poultry serovars exhibited similar antimicrobial resistance patterns against 28 different antimicrobial agents, particularly against ampicillin, cefotaxime, oxytetracycline, and erythromycin. Plasmids harboring blaCTX-m, blaSHV, blaTEM, and aac(6’)-Ib were detected in 11 (22%) and 8 (16%) of human and poultry serovars, respectively. Molecular detection of the most clinically relevant virulence genes and analysis of the associated virulence genotypes proved that the human (n = 11) and poultry serovars (n = 12) shared 11 genotypes. Enterobacterial repetitive intergenic consensus PCR analysis revealed that human and poultry serovars were clustered together in 3 out of the 4 clusters with a similarity index ranged from 0.15 to 1. Since poultry are usually consumed by humans, the presence of resistant bacteria harboring transmissible genetic elements is of great health concern.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 979
Author(s):  
Juan Carlos Hernández-González ◽  
Abigail Martínez-Tapia ◽  
Gebim Lazcano-Hernández ◽  
Blanca Estela García-Pérez ◽  
Nayeli Shantal Castrejón-Jiménez

In the search for an alternative treatment to reduce antimicrobial resistance, bacteriocins shine a light on reducing this problem in public and animal health. Bacteriocins are peptides synthesized by bacteria that can inhibit the growth of other bacteria and fungi, parasites, and viruses. Lactic acid bacteria (LAB) are a group of bacteria that produce bacteriocins; their mechanism of action can replace antibiotics and prevent bacterial resistance. In veterinary medicine, LAB and bacteriocins have been used as antimicrobials and probiotics. However, another critical role of bacteriocins is their immunomodulatory effect. This review shows the advances in applying bacteriocins in animal production and veterinary medicine, highlighting their biological roles.


2020 ◽  
Vol 13 (2) ◽  
pp. 266-274 ◽  
Author(s):  
Sharmin Akter ◽  
Abdullah Al Momen Sabuj ◽  
Zobayda Farzana Haque ◽  
Md. Tanvir Rahman ◽  
Md. Abdul Kafi ◽  
...  

Background and Aim: Houseflies (Musca domestica) are synanthropic insects which serve as biological or mechanical vectors for spreading multidrug-resistant bacteria responsible for many infectious diseases. This study aimed to detect antibiotic-resistant bacteria from houseflies, and to examine their resistance genes. Materials and Methods: A total of 140 houseflies were captured using sterile nylon net from seven places of Mymensingh city, Bangladesh. Immediately after collection, flies were transferred to a sterile zipper bag and brought to microbiology laboratory within 1 h. Three bacterial species were isolated from houseflies, based on cultural and molecular tests. After that, the isolates were subjected to antimicrobial susceptibility testing against commonly used antibiotics, by the disk diffusion method. Finally, the detection of antibiotic resistance genes tetA, tetB, mcr-3, mecA, and mecC was performed by a polymerase chain reaction. Results: The most common isolates were Staphylococcus aureus (78.6%), Salmonella spp., (66.4%), and Escherichia coli (51.4%). These species of bacteria were recovered from 78.3% of isolates from the Mymensingh Medical College Hospital areas. Most of the isolates of the three bacterial species were resistant to erythromycin, tetracycline, penicillin and amoxicillin and were sensitive to ciprofloxacin, ceftriaxone, chloramphenicol, gentamicin, and azithromycin. Five antibiotic resistance genes of three bacteria were detected: tetA, tetB, mcr-3, and mecA were found in 37%, 20%, 20%, and 14% isolates, respectively, and no isolates were positive for mecC gene. Conclusion: S. aureus, Salmonella spp., and E. coli with genetically-mediated multiple antibiotic resistance are carried in houseflies in the Mymensingh region. Flies may, therefore, represent an important means of transmission of these antibiotic-resistant bacteria, with consequent risks to human and animal health.


2020 ◽  
Vol 13 (12) ◽  
pp. 2713-2727
Author(s):  
Md. Al Amin ◽  
M. Nazmul Hoque ◽  
Amam Zonaed Siddiki ◽  
Sukumar Saha ◽  
Md. Mostofa Kamal

Antimicrobial resistance (AMR) is a crucial multifactorial and complex global problem and Bangladesh poses a regional and global threat with a high degree of antibiotic resistance. Although the routine application of antimicrobials in the livestock industry has largely contributed to the health and productivity, it correspondingly plays a significant role in the evolution of different pathogenic bacterial strains having multidrug resistance (MDR) properties. Bangladesh is implementing the National Action Plan (NAP) for containing AMR in human, animal, and environment sectors through "One Health" approach where the Department of Livestock Services (DLS) is the mandated body to implement NAP strategies in the animal health sector of the country. This review presents a "snapshot" of the predisposing factors, and current situations of AMR along with the weakness and strength of DLS to contain the problem in animal farming practices in Bangladesh. In the present review, resistance monitoring data and risk assessment identified several direct and/or indirect predisposing factors to be potentially associated with AMR development in the animal health sector of Bangladesh. The predisposing factors are inadequate veterinary healthcare, monitoring and regulatory services, intervention of excessive informal animal health service providers, and farmers' knowledge gap on drugs, and AMR which have resulted in the misuse and overuse of antibiotics, ultimate in the evolution of antibiotic-resistant bacteria and genes in all types of animal farming settings of Bangladesh. MDR bacteria with extreme resistance against antibiotics recommended to use in both animals and humans have been reported and been being a potential public health hazard in Bangladesh. Execution of extensive AMR surveillance in veterinary practices and awareness-building programs for stakeholders along with the strengthening of the capacity of DLS are recommended for effective containment of AMR emergence and dissemination in the animal health sector of Bangladesh.


2020 ◽  
Vol 44 ◽  
pp. 1
Author(s):  
Jeadran N Malagón-Rojas ◽  
Eliana L Parra Barrera ◽  
Luisa Lagos

Antimicrobial resistance (AMR) in pathogens has been associated mainly with excessive use of antibiotics. Most studies of resistance have focused on clinical pathogens; however, microorganisms are exposed to numerous anthropogenic substances. Few studies have sought to determine the effects of chemical substances on microorganisms. Exposure to these substances may contribute to increased rates of AMR. Understanding microorganism communities in natural environments and AMR mechanisms under the effects of anthropogenic substances, such as pesticides, is important to addressing the current crisis of antimicrobial resistance. This report draws attention to molecules, rather than antibiotics, that are commonly used in agrochemicals and may be involved in developing AMR in non-clinical environments, such as soil. This report examines pesticides as mediators for the appearance of AMR, and as a route for antibiotic resistance genes and antimicrobial resistant bacteria to the anthropic environment. Available evidence suggests that the natural environment may be a key dissemination route for antibiotic-resistant genes. Understanding the interrelationship of soil, water, and pesticides is fundamental to raising awareness of the need for environmental monitoring programs and overcoming the current crisis of AMR.


2019 ◽  
Vol 47 (1) ◽  
pp. 477-486 ◽  
Author(s):  
Ciara Tyrrell ◽  
Catherine M. Burgess ◽  
Fiona P. Brennan ◽  
Fiona Walsh

Abstract Antibiotic resistance is currently one of the greatest threats to human health. The global overuse of antibiotics in human medicine and in agriculture has resulted in the proliferation and dissemination of a multitude of antibiotic resistance genes (ARGs). Despite a large proportion of antibiotics being used in agriculture, little is understood about how this may contribute to the overall antibiotic resistance crisis. The use of manure in agriculture is a traditional and widespread practice and is essential for returning nutrients to the soil; however, the impact of continuous manure application on the environmental microbiome and resistome is unknown. The use of antibiotics in animal husbandry in therapeutic and sub-therapeutic doses creates a selective pressure for ARGs in the gut microbiome of the animal, which is then excreted in the faeces. Therefore, the application of manure to agricultural land is a potential route for the transmission of antibiotic-resistant bacteria from livestock to crops, animals and humans. It is of vital importance to understand the mechanisms behind ARG enrichment and its maintenance both on the plant and within the soil microbiome to mitigate the spread of this resistance to animals and humans. Understanding this link between human health, animal health, plant health and the environment is crucial to inform implementation of new regulations and practice regarding antibiotic use in agriculture and manure application, aimed at ensuring the antibiotic resistance crisis is not aggravated.


Sign in / Sign up

Export Citation Format

Share Document