scholarly journals Inclusion of landslide tsunamis generation into a depth integrated wave model

2010 ◽  
Vol 10 (11) ◽  
pp. 2259-2268 ◽  
Author(s):  
C. Cecioni ◽  
G. Bellotti

Abstract. A numerical model based on the mild slope equation, suitable to reproduce the propagation of small amplitude tsunamis in the far field, is extended to reproduce the generation and the propagation of waves generated by landslides. The wave generation is modeled through a forcing term included in the field equation, which reproduces the effects of the movement of a submerged landslide on the fluid. The measurements of three dimensional laboratory experiments, which simulate tsunamis generated by landslide sliding along the flank of a conical island, are compared with the theoretical calculation results. The present approach is also compared with the similar method of Tinti et al. (2006) used for the generation of these waves in depth integrated model, and the different behavior when using frequency-dispersive and non-dispersive equations is highlighted.

2005 ◽  
Vol 32 (6) ◽  
pp. 1082-1092 ◽  
Author(s):  
Dongcheng Li ◽  
Vijay Panchang ◽  
Zhaoxiang Tang ◽  
Zeki Demirbilek ◽  
Jerry Ramsden

Computer models based on the two-dimensional (2-D) elliptic mild-slope equation are nowadays routinely used in harbor engineering applications. However, structures like floating breakwaters and docks, which are often encountered in the modeling domain, render the problem for locally three-dimensional model and hence are problematic to incorporate in a 2-D model. Tsay and Liu (Applied Ocean Research. 1983. Vol 5(1): 30–37) proposed a highly simplified but approximate approach that does not violate the overall two dimensionality of the problem. The validity of their approach is examined in detail, and it is found that although their approximation provides results with the correct trend, the actual solutions deviate considerably from the theoretical solutions. We have developed correction factors that may be used to produce more reliable results using the framework of Tsay and Liu. Application of the resulting method to a harbor in Alaska shows that docks in the harbor distort the wave field considerably and create a reflective pattern that has the potential to affect navigation safety in some areas. A by-product of this paper consists of plots of transmission coefficients for waves propagating past rectangular and cylindrical floating objects of infinite extent for a wide range of conditions encountered in practice. Such transmission coefficients are at present readily available in the published literature for selected cases only.Key words: wave, model, mild slope, equation, floating breakwater, dock, marina, harbor.


1982 ◽  
Vol 14 (3) ◽  
pp. 33-39
Author(s):  
C Y Kuo

An existing, three-dimensional, Eulerian-Lagrangian finite-difference model was modified and used to examine the far-field transport processes of dumped sewage sludge in the New York Bight. Both in situ and laboratory data were utilized in an attempt to approximate model inputs such as mean current speed, vertical and horizontal diffusion coefficients, particle size distributions, and specific gravities. Concentrations of the sludge near the sea surface predicted from the computer model were compared qualitatively with those remotely sensed.


Crystals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 19 ◽  
Author(s):  
Yaping Tao ◽  
Ligang Han ◽  
Andong Sun ◽  
Kexi Sun ◽  
Qian Zhang ◽  
...  

Methyl-3-aminothiophene-2-carboxylate (matc) is a key intermediate in organic synthesis, medicine, dyes, and pesticides. Single crystal X-ray diffraction analysis reveals that matc crystallizes in the monoclinic crystal system P21/c space group. Three matc molecules in the symmetric unit are crystallographically different and further linked through the N–H⋯O and N–H⋯N hydrogen bond interactions along with weak C–H⋯S and C–H⋯Cg interactions, which is verified by the three-dimensional Hirshfeld surface, two-dimensional fingerprint plot, and reduced density gradient (RDG) analysis. The interaction energies within crystal packing are visualized through dispersion, electrostatic, and total energies using three-dimensional energy-framework analyses. The dispersion energy dominates in crystal packing. To better understand the properties of matc, electrostatic potential (ESP) and frontier molecular orbitals (FMO) were also calculated and discussed. Experimental and calculation results suggested that amino and carboxyl groups can participate in various inter- and intra-interactions.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Zhengzhi Wang ◽  
Chunling Zhu

In view of the rotor icing problems, the influence of centrifugal force on rotor blade icing is investigated. A numerical simulation method of three-dimensional rotor blade icing is presented. Body-fitted grids around the rotor blade are generated using overlapping grid technology and rotor flow field characteristics are obtained by solving N-S equations. According to Eulerian two-phase flow, the droplet trajectories are calculated and droplet impingement characteristics are obtained. The mass and energy conservation equations of ice accretion model are established and a new calculation method of runback water mass based on shear stress and centrifugal force is proposed to simulate water flow and ice shape. The calculation results are compared with available experimental results in order to verify the correctness of the numerical simulation method. The influence of centrifugal force on rotor icing is calculated. The results show that the flow direction and distribution of liquid water on rotor surfaces change under the action of centrifugal force, which lead to the increasing of icing at the stagnation point and the decreasing of icing on both frozen limitations.


2013 ◽  
Vol 791-793 ◽  
pp. 1436-1440
Author(s):  
Ling Hang Yang

With the development of computer hardware and software technology, virtual reality technology of computer has been widely used in various fields. Virtual teaching process is one of the main applications of virtual reality computer technology. Tennis is one of the most common sports. Tennis process mainly includes the process of catching a ball, serving a ball and hitting a ball. Virtual process of tennis system must establish an accurate numerical simulation model to calculate the mechanical impedance during the arm movement of human. According to this, it builds a model of the mechanical impedance of human arm in tennis virtual system using three-dimensional simulation software in this paper and gets the curve of mechanical impedance through the simulation. Finally, the article compares calculation results with the theoretical results and concludes that the theoretical results and simulation results are basically consistent which provide a theoretical reference for the design of the development of virtual system for the human.


2009 ◽  
Vol 618 ◽  
pp. 1-11 ◽  
Author(s):  
PAOLO BLONDEAUX ◽  
GIOVANNA VITTORI

The process which leads to the formation of three-dimensional sand waves is investigated by means of a stability analysis which considers the time development of a small-amplitude bottom perturbation of a shallow tidal sea. The weakly nonlinear interaction of a triad of resonant harmonic components of the bottom perturbation is considered. The results show that the investigated resonance mechanism can trigger the formation of a three-dimensional bottom pattern similar to that observed in the field.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2114
Author(s):  
Yongshui Kang ◽  
Congcong Hou ◽  
Jingyi Liu ◽  
Zhi Geng ◽  
Jianben Chen ◽  
...  

Massive deformation often occurs when deep coalmine roadways pass through a fault zone due to the poor integrity of rock mass and high tectonic stress. To study deformation characteristics of the surrounding rock in the fault zone of a coalmine, a roadway passing through the FD1041 fault zone in China’s Gugui coalfield was investigated in this research. The geo-stress characteristics of this fault zone were analyzed based on the Mohr failure theory. Furthermore, a three-dimensional model for the experimental roadway in the FD1041 fault zone was built and calculated by a numerical program based on the distinct element method. Stability conditions of the roadway, using several types of support methods, were calculated and compared. Calculation results indicated that pre-grouting provides favorable conditions for the stability of a roadway in a fault zone. Finally, an optimized support strategy was proposed and implemented in the experimental roadway. Monitored results demonstrated that the optimized support strategy is appropriate for this fault zone.


2021 ◽  
Author(s):  
Wen Yang ◽  
Lun Zhou ◽  
Junrong Qiu ◽  
Yun Tai

Abstract Three dimensional PWR-core analysis code CORAL is developed by Wuhan Second Ship Design and Research Institute. This code provides basic functions including three-dimensional power distribution, fine power reconstruction, fuel temperature distribution, critical search, control rod worth, reactivity coefficients, burnup and nuclide density distribution, etc. CORAL employ nodal expansion method to solve neutron diffusion equation, and the least square method is used to achieve few group constants, and sub-channel model and one-dimensional heat transfer is used to calculate fuel temperature and coolant density distribution, and burnup distribution and nuclide nuclear density could be obtained by solving macro-depletion and micro-depletion equation. The CORAL code is convenient to update and maintain in consider of modular, object-oriented programming technology. In order to analyze the computational accuracy of the CORAL code in small PWR-core and its capability to deal with heterogeneous, calculation analysis are carried out based on the material and geometry parameters of the SMART core. The core has 57 fuel assemblies, with 8, 20 or 24 gadolinium rods arranged in the fuel assemblies. In this paper, a quantitative comparison and analysis of the small PWR problem calculation results are carried out. Numerical results, including effective multiplication factor, assembly power distribution and pin power distribution, all agree well with the calculation results of OpenMC or Bamboo at both hot zero-power (HZP) and hot full-power (HFP) conditions.


2018 ◽  
Vol 74 (5) ◽  
pp. 425-446 ◽  
Author(s):  
Ashley Nicole Bucsek ◽  
Darren Dale ◽  
Jun Young Peter Ko ◽  
Yuriy Chumlyakov ◽  
Aaron Paul Stebner

Modern X-ray diffraction techniques are now allowing researchers to collect long-desired experimental verification data sets that are in situ, three-dimensional, on the same length scales as critical microstructures, and using bulk samples. These techniques need to be adapted for advanced material systems that undergo combinations of phase transformation, twinning and plasticity. One particular challenge addressed in this article is direct analysis of martensite phases in far-field high-energy diffraction microscopy experiments. Specifically, an algorithmic forward model approach is presented to analyze phase transformation and twinning data sets of shape memory alloys. In the present implementation of the algorithm, the crystallographic theory of martensite (CTM) is used to predict possible martensite microstructures (i.e. martensite orientations, twin mode, habit plane, twin plane and twin phase fractions) that could form from the parent austenite structure. This approach is successfully demonstrated on three single- and near-single-crystal NiTi samples where the fundamental assumptions of the CTM are not upheld. That is, the samples have elastically strained lattices, inclusions, precipitates, subgrains, R-phase transformation and/or are not an infinite plate. The results indicate that the CTM still provides structural solutions that match the experiments. However, the widely accepted maximum work criterion for predicting which solution of the CTM should be preferred by the material does not work in these cases. Hence, a more accurate model that can simulate these additional structural complexities can be used within the algorithm in the future to improve its performance for non-ideal materials.


Sign in / Sign up

Export Citation Format

Share Document