scholarly journals Role of some fungal biocontrol agents to protect foliar of cucumber plants

2020 ◽  
Vol 8 (1) ◽  
pp. 63-74
Author(s):  
Abdul N. A. Matroud ◽  
Thakaa F. Mohammed

This study aimed to find biological factors that increase plant growth and thus the resistance of shoot fungi away from the use of chemical pesticides. The study included isolation of a large group of soil fungi Surrounding the roots of the cucumber plant grown in the greenhouse. The results of study showed the ability of fungal isolates to dissolve the phosphorus component in medium NBRIP under shaking incubated conditions. The treatment of Aspergillus niger reduced the pH after 5, 10, 15 days of incubation an average of 3.760, 3.763, 2.947 respectively. The laboratory fungal isolates have also showed their ability to produce the hormone acetic acid IAA. The results showed an increase in growth parameters of plants treated with the biological resistance fungi A. niger and T. koningi2 by increasing the wet and dry weight of the shoots and roots. The results of the peroxide enzyme estimate also confirmed the increase of this enzyme due to the biological resistance fungi as the treatment of A. niger reached 0.02067 compared to the comparison treatment, it reached 0.01333. This is an indication of the increased induction of systemic resistance in the cucumber plant, as the pathogenic fungi were not recorded on the plants treated with the biological resistance fungi, and A. alternata was recorded on the comparison treatment.

2021 ◽  
Vol 13 (9) ◽  
pp. 5074
Author(s):  
Urooj Kanwal ◽  
Muhammad Ibrahim ◽  
Farhat Abbas ◽  
Muhammad Yamin ◽  
Fariha Jabeen ◽  
...  

Phytoremediation is a cost-effective and environmentally friendly approach that can be used for the remediation of metals in polluted soil. This study used a hedge plant–calico (Alternanthera bettzickiana (Regel) G. Nicholson) to determine the role of citric acid in lead (Pb) phytoremediation by exposing it to different concentrations of Pb (0, 200, 500, and 1000 mg kg−1) as well as in a combination with citric acid concentration (0, 250, 500 µM). The analysis of variance was applied on results for significant effects of the independent variables on the dependent variables using SPSS (ver10). According to the results, maximum Pb concentration was measured in the upper parts of the plant. An increase in dry weight biomass, plant growth parameters, and photosynthetic contents was observed with the increase of Pb application (200 mg kg−1) in soil while a reduced growth was experienced at higher Pb concentration (1000 mg kg−1). The antioxidant enzymatic activities like superoxide dismutase (SOD) and peroxidase (POD) were enhanced under lower Pb concentration (200, 500 mg kg−1), whereas the reduction occurred at greater metal concentration Pb (1000 mg kg−1). There was a usual reduction in electrolyte leakage (EL) at lower Pb concentration (200, 500 mg kg−1), whereas EL increased at maximum Pb concentration (1000 mg kg−1). We concluded that this hedge plant, A. Bettzickiana, has the greater ability to remediate polluted soils aided with citric acid application.


2015 ◽  
Vol 55 (2) ◽  
pp. 126-135
Author(s):  
Magd El-Morsi Awad El-Morsi ◽  
Montaser Fawzy Abdel-Monaim

Abstract Root rot and wilt disease complex was detected in several fig (Ficus carica L.), grapevine (Vitis vinifera L.), and pomegranate (Punica granatum L.) transplants in nurseries and new orchards of the El-Kharga, Baris, Balate, El-Dakhla, and El-Farafrah districts, of the New Valley governorate, Egypt. The percentage of root rot/wilt incidence and severity on fig, grapevine, and pomegranate transplants in the surveyed districts differed. The average percentages of root rot/wilt incidence and severity, in the surveyed districts, were 41.26, 31.42% in fig, 38.2, 29.5% in grapevine, and 32.1, 23.7% in pomegranate transplants, respectively. The most frequently isolated fungi from rotted roots of fig, grapevine, and pomegranate transplants were Fusarium oxysporum, Rhizoctonia solani, and Macrophomena phaseolina. In pathogenicity tests, all the tested fungi were pathogenic to fig, grapevine, and pomegranate transplants. Under laboratory conditions, all of the following tested bio-agents: Azotobacter sp., Bacillus cereus, B. megaterium, and B. subtilis, were able to inhibit growth of the causal pathogens to different degrees. The effect of these bio-agents individually and/or mixed, when used as a soil drench treatment, were varied in reducing the incidence and severity of root rot/wilt diseases in fig, grapevine, and pomegranate transplants under greenhouse conditions. The mixed bio-agents gave the highest protection against root rot/wilt diseases compared with the individually used of bio-agents. All treatments significantly increased plant height, number of leaves/transplant, leaf area, fresh and dry weight/transplant compared with the control treatment.


2017 ◽  
Vol 30 (2) ◽  
pp. 72-82
Author(s):  
Abdulnabi A.A. Matrood ◽  
Azher H. Al-Taie

The agricultural production processes currently targeted reducing chemical fungicides usage and increasing bio-agent application through controlling diseases alone or integrating it with other factors. The study aimed to investigate the induction of systemic resistance by multi bio-agents represented by mycorrhizal fungi Glomus mosseae, G. intradicas and Trichoderma harizanum against pathogenic fungus Rhizoctonia solani which caused wilt disease and growth defoliation to Okra seedling. Three isolate of R. solani were recorded on root of Okra seedling, named (local - Batra). Isolate no. (3) was more virulence than other isolates in damping off disease in the pre and post emergence. Results also showed that G. mosseae and G. intradicas with T. harizanum had a positive influence in reducing detrimental effect of R. solani in all growth parameters (e.g. fresh and dry weight of root) on disease severity on Okra plant caused by R. solani. Bio-agents (G. mosseae,G. intradicas and T. harizanum) increased resistance in Okra plants by raising production of enzymescatalase and Peroxidase.this experiment was revealed that using a complex of bio-agent’s factors were greatly increase the efficiency of biological control than using each of them individually. We conclude that the broad diversity of rhizosphere micro-organisms as well as the confronting between the bio-chemical and physical changes could be reflected the variations in the metabolic secondary products that could inhibit pathogens.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Leila Bensidhoum ◽  
El-hafid Nabti

AbstractCystoseira mediterranea (Sauv.) extract was tested for its ability to restore barley (Hordeum vulgare) growth under salt stress (350 mM NaCl), shoot growth; membrane integrity; lipid peroxidation and hydrogen peroxide determination were performed. In normal conditions, the obtained data revealed the ability of the extract to stimulate most of barley growth parameters. However, it showed significant effect on most of barley growth parameters (plant height, fresh and dry weight of shoots and roots) and chlorophyll content, under salt stress. The measurement of stress parameters (membrane integrity, lipid peroxidation and hydrogen peroxide) revealed significant effect of C. mediterranea extract on reducing the deleterious impact of salt stress on barley seedlings.


2014 ◽  
Vol 65 (3-4) ◽  
pp. 277-282 ◽  
Author(s):  
Anna Siedlecka ◽  
Zbigniew Krupa

The interaction between cadmium, one of the most toxic heavy metals, and iron, an essential plant nutritional element, was investigated in <em>Phaseolus vulgaris</em> L. (cv. Słowianka) seedlings. The interaction was externally induced by changing the content of both metals in the nutrient medium. Under iron deficiency conditions (0 and 0.5 of normal dose of this element), the toxic effects of cadmium on plant growth parameters, like fresh and dry weight accumulation, primary leaves area, etc., were generally much more pronounced than under normal iron supply. At normal and excess iron supply (1, 2 and 4 doses) cadmium diminished iron accumulation in roots and primary leaves, but on the other hand excess iron decreased cadmium level, preventing plants from extreme toxicity of very high cadmium concentrations in the growth environment. It is to be noted that iron is classified also as a heavy metal, and its excess may become toxic, e.g. decreasing root dry weight or diminishing leaf area, especially at the highest dose. The detoxication role of iron against cadmium, and possibly other toxic metals is, however, limited to concentrations of this element in the nutrient solution which themselves are not toxic for the organism.


2017 ◽  
Vol 7 (4) ◽  
pp. 30-34 ◽  
Author(s):  
O. A. Didur ◽  
Yu. L. Kulbachko ◽  
V. Y. Gasso

<p>The problem of transformation of natural landscapes resulted from the negative technogenic impact is highlighted. It is shown that mining enterprises are powerful anthropo-technical sources of organic and inorganic toxicants entering the environment. Their wastes pollute all components of the ecosystems and negatively influence human health by increasing a risk of disease. The nature of the accumulation of trace elements (Fe, Cu, Zn, Ni, Cd, and Pb) by invertebrate animals of various functional groups under conditions of anthropo-technogenic pressure was studied. The sample plots were located on self-overgrowing sites with ruderal vegetation located in the immediate vicinity of the Mangan ore-dressing and processing enterprise (Dnipropetrovsk region). It is quite naturally that among the studied biogenic microelements (Fe, Cu, Zn and Ni), the phyto-, zoo-, and saprophages in the investigated zone of technogenic pollution most actively accumulate Fe:<em> </em>22758, 17516 and 18884 mg/kg dry weight on average, respectively. There are significant differences (p ≤ 0.05) in the content of studied microelements between saprophages and phytophages. The saprophages accumulate such trace metals as Mn, Cu, Zn and Cd in high quantities, but Ni and Pb – in smaller ones. The saprophagous functional group of invertebrates is an active agent of detritogenesis, in the conditions of modern nature management it acts as a powerful element of ecosystem engineering (habitat transformation), the main ecological role of which is to modify the habitat of other soil biota. In addition, the saprophages fulfil their concentrating geochemical function. They actively participate in the most important soil biochemical process: the formation of humus, the migration of microelements along trophic chains, the biological cycle in general, and provide such supporting ecosystem services as increasing soil fertility and nutrient cycling.</p>


2020 ◽  
Vol 13 (2) ◽  
pp. 83-92 ◽  
Author(s):  
A. Adam

SummaryEnhancement of the resistance level in plants by rhizobacteria has been proven in several pathosystems. This study investigated the ability of four rhizobacteria strains (Pseudomonas putida BTP1 and Bacillus subtilis Bs2500, Bs2504 and Bs2508) to promote the growth in three barley genotypes and protect them against Cochliobolus sativus. Our results demonstrated that all tested rhizobacteria strains had a protective effect on barley genotypes Arabi Abiad, Banteng and WI2291. However, P. putida BTP1 and B. subtilis Bs2508 strains were the most effective as they reduced disease incidence by 53 and 38% (mean effect), respectively. On the other hand, there were significant differences among the rhizobacteria-treated genotypes on plant growth parameters, such as wet weight, dry weight, plant height and number of leaves. Pseudomonas putida BTP1 strain was the most effective as it significantly increased plant growth by 15-32%. In addition, the susceptible genotypes Arabi Abiad and WI2291 were the most responsive to rhizobacteria. This means that these genotypes have a high potential for increase of their resistance against the pathogen and enhancement of plant growth after the application of rhizobacteria. Consequently, barley seed treatment with the tested rhizobacteria could be considered as an effective biocontrol method against C. sativus.


Toxics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 182
Author(s):  
Ruchi Bansal ◽  
Swati Priya ◽  
Harsh Kumar Dikshit ◽  
Sherry Rachel Jacob ◽  
Mahesh Rao ◽  
...  

Cadmium (Cd) is a hazardous heavy metal, toxic to our ecosystem even at low concentrations. Cd stress negatively affects plant growth and development by triggering oxidative stress. Limited information is available on the role of iron (Fe) in ameliorating Cd stress tolerance in legumes. This study assessed the effect of Cd stress in two lentil (Lens culinaris Medik.) varieties differing in seed Fe concentration (L4717 (Fe-biofortified) and JL3) under controlled conditions. Six biochemical traits, five growth parameters, and Cd uptake were recorded at the seedling stage (21 days after sowing) in the studied genotypes grown under controlled conditions at two levels (100 μM and 200 μM) of cadmium chloride (CdCl2). The studied traits revealed significant genotype, treatment, and genotype × treatment interactions. Cd-induced oxidative damage led to the accumulation of hydrogen peroxide (H2O2) and malondialdehyde in both genotypes. JL3 accumulated 77.1% more H2O2 and 75% more lipid peroxidation products than L4717 at the high Cd level. Antioxidant enzyme activities increased in response to Cd stress, with significant genotype, treatment, and genotype × treatment interactions (p < 0.01). L4717 had remarkably higher catalase (40.5%), peroxidase (43.9%), superoxide dismutase (31.7%), and glutathione reductase (47.3%) activities than JL3 under high Cd conditions. In addition, L4717 sustained better growth in terms of fresh weight and dry weight than JL3 under stress. JL3 exhibited high Cd uptake (14.87 mg g−1 fresh weight) compared to L4717 (7.32 mg g−1 fresh weight). The study concluded that the Fe-biofortified lentil genotype L4717 exhibited Cd tolerance by inciting an efficient antioxidative response to Cd toxicity. Further studies are required to elucidate the possibility of seed Fe content as a surrogacy trait for Cd tolerance.


Helia ◽  
2001 ◽  
Vol 24 (35) ◽  
pp. 135-148
Author(s):  
Mohammed El Midaoui ◽  
Ahmed Talouizte ◽  
Benbella Mohamed ◽  
Serieys Hervé ◽  
Ait Houssa Abdelhadi ◽  
...  

SUMMARYAn experiment has been carried out in order to study the behaviour under mineral deficiency of three sunflower genotypes, a population variety (Oro 9) and two hybrids (Mirasol and Albena). Sunflower seedlings were submitted to five treatments: N deficiency (N0), P deficiency (P0), K deficiency (K0), N and K deficiency (N0K0) and a control. Plants were harvested when they reached 3-4 true pairs of leaves. Growth parameters measured (height, total leaf area, root length, root and shoot dry mater) were all significantly reduced by mineral deficiency. Leaf area was most reduced by N0 (-61%) and P0 (-56%). Total dry matter was most affected by N0 (-63%) and by N0K0 (-66%). Genotype comparisons showed that Oro 9 had the highest shoot dry matter while Albena had the lowest root dry matter. Effect of mineral deficiency on content and partitioning of N, P, K, Ca and Na was significant and varied according to treatments and among plant parts. Shoot dry weight was significantly correlated with root N content (r2=0.81) and root K content (r2=-0.61) for N0 and K0.


2021 ◽  
Vol 7 (3) ◽  
pp. 202
Author(s):  
Johannes Delgado-Ospina ◽  
Junior Bernardo Molina-Hernández ◽  
Clemencia Chaves-López ◽  
Gianfranco Romanazzi ◽  
Antonello Paparella

Background: The role of fungi in cocoa crops is mainly associated with plant diseases and contamination of harvest with unwanted metabolites such as mycotoxins that can reach the final consumer. However, in recent years there has been interest in discovering other existing interactions in the environment that may be beneficial, such as antagonism, commensalism, and the production of specific enzymes, among others. Scope and approach: This review summarizes the different fungi species involved in cocoa production and the cocoa supply chain. In particular, it examines the presence of fungal species during cultivation, harvest, fermentation, drying, and storage, emphasizing the factors that possibly influence their prevalence in the different stages of production and the health risks associated with the production of mycotoxins in the light of recent literature. Key findings and conclusion: Fungi associated with the cocoa production chain have many different roles. They have evolved in a varied range of ecosystems in close association with plants and various habitats, affecting nearly all the cocoa chain steps. Reports of the isolation of 60 genera of fungi were found, of which only 19 were involved in several stages. Although endophytic fungi can help control some diseases caused by pathogenic fungi, climate change, with increased rain and temperatures, together with intensified exchanges, can favour most of these fungal infections, and the presence of highly aggressive new fungal genotypes increasing the concern of mycotoxin production. For this reason, mitigation strategies need to be determined to prevent the spread of disease-causing fungi and preserve beneficial ones.


Sign in / Sign up

Export Citation Format

Share Document