scholarly journals Phytochemical Profile and Evaluation of the Antimicrobial Activity of Echinodorus grandiflorus Crude Extract of the Leaves

2020 ◽  
Vol 8 (4) ◽  
pp. 176
Author(s):  
Carla Indianara Bonetti ◽  
Mariana Dalmagro ◽  
Juliana Cristhina Friedrich ◽  
Douglas Rossi Jesus ◽  
Mariana Moraes Pinc ◽  
...  

Echinodorus grandiflorus has pharmacological properties due to its secondary metabolism, such as anti-inflammatory, antioxidant, diuretic, analgesic, anti-rheumatic, antihypertensive, and cardioprotective effects. The aim of this study was to determine the phytochemical profile and evaluate the antimicrobial activity of crude extract of E. grandiflorus form its leaves. In the analysis of the phytochemical profile, qualitative tests were performed to identify tannins, alkaloids, flavonoids, anthraquinones, steroids, triterpenes, saponins, polysaccharides, and coumarins. Antimicrobial tests were performed using the disk diffusion method and minimum inhibitory concentration (MIC) in 96-well microplates, using hydroalcoholic crude extract obtained by maceration in the proportions 1:5 and 1:10. The higher content of crude extract was observed by maceration 1:5 (3.26%). In phytochemical tests, the presence of tannins, alkaloids, flavonoids, and saponins was detected. The microbial strains evaluated were Staphylococcus aureus, S. epidermidis, Lactobacillus casei, Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans. The antimicrobial activity of crude extract has not apparent against the tested organisms. It is concluded that the crude extract present several phytochemical, however did not show antimicrobial activity, and furthermore studies should be carried out researching isolated chemical compounds and the antimicrobial activity leaves crude extract of Echinodorus grandiflorus plant.

Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3068 ◽  
Author(s):  
Jong Oh ◽  
Yi Kim ◽  
Hyo-Seung Gang ◽  
Jin Han ◽  
Hyung-Ho Ha ◽  
...  

One hundred and seventy seven acetone extracts of lichen and 258 ethyl acetate extracts of cultured lichen-forming fungi (LFF) were screened for antimicrobial activity against Staphylococcus aureus and Enterococcus faecium using a disk diffusion method. Divaricatic acid was isolated from Evernia mesomorpha and identified by LC-MS, 1H-, 13C- and DEPT-NMR. Purified divaricatic acid was effective against Gram + bacteria, such as Bacillus subtilis, Staphylococcus epidermidis, Streptococcus mutans, and Enterococcus faecium, with the minimum inhibitory concentration (MIC) values ranging from 7.0 to 64.0 μg/mL, whereas vancomycin was effective in the MICs ranging from 0.78 to 25.0 μg/mL. Interestingly, the antibacterial activity of divaricatic acid was higher than vancomycin against S. epidermidis and E. faecium, and divaricatic acid was active against Candida albicans. In addition, divaricatic acid was active as vancomycin against S. aureus (3A048; an MRSA). These results suggested that divaricatic acid is a potential antimicrobial agent for the treatment of MRSA infections.


2020 ◽  
Vol 42 (3) ◽  
Author(s):  
Chu Thi Thu Ha ◽  
Bui Van Thanh ◽  
Dinh Thi Thu Thuy

Leaf essential oil of Magnolia coriacea (Hung T. Chang & B. L. Chen) Figlar growing wild in the Bat Dai Son Nature Reserve, Ha Giang Province, Viet Nam was obtained by hydrodistillation and its chemical composition was analyzed using GC/MS. In total, 45 compounds were detected in the essential oil, accounting for 87.1% of the oil, in which 37 compounds were identified accounting for 66.9%. Bicyclogermacrene (12.6%) and spathulenol (17.0%) were the main components of the leaf essential oil of M. coriacea. Antimicrobial activity of the essential oil sample was tested against three microorganism strains using an agar disk diffusion method. The results show that the inhibitory zone diameters ranged from 8.5 to 20.5 mm. Median inhibitory concentration (IC50) and minimum inhibitory concentration (MIC) of the essential oil was determined using microdilution broth susceptibility assay against seven test microorganism strains. Bacillus subtilis had the highest sensitivity with IC50 and MIC values of 185.9 and 512 µg/mL, respectively.  


2019 ◽  
Vol 18 (5) ◽  
pp. 262-274
Author(s):  
E. Benyagoub ◽  
N. Nabbou ◽  
S. Boukhalkhel ◽  
I. Dehini

The medicinal value of the plants is due to their chemical components that bring a definite physiological action on the human body to prevent the diseases. In this work, we investigated the antimicrobial activity of leaves’ extracts of Quercus robur L., collected from the Algerian upper highlands, on ten bacterial strains and one fungal strain known to be pathogenic. First, we performed a qualitative phytochemical analysis, and second, antimicrobial activity tests performed by agar diffusion method (disc and well) with the determination of MIC by broth macro-dilution method. Given the results, it appears that obtained macerates of Quercus robur L. were rich in bioactive phytoconstituents such as alkaloids, anthraquinones, saponins, tannins, and other components. The yield of aqueous and methanolic macerates of leaves was 8.5 ± 1.41 and 22.4 ± 4.36%, respectively. The bacterial resistance was relatively important to several antibiotics, namely, ampicillin, amoxicillin + clavulanic acid for strains of Escherichia coli and Salmonella sp. However, Staphylococcus aureus strains were resistant to fusidic acid, penicillin, and oxacillin; while Enterococcus faecalis was resistant to fusidic acid, penicillin, oxacillin, and ticarcillin. The antibacterial activity of the macerates toward tested microbial strains showed that the aqueous and methanolic macerates of the leaves were proportional to the tested concentration and active not only against Gram-positive and Gram-negative bacteria but also on the fungal species Candida albicans. The estimated MIC for Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus was in the order of 10 mg/mL, which seems more effective than toward Salmonella sp., Klebsiella pneumoniae, Pseudomonas aeruginosa, and Candida albicans which were in the order of 30 mg/mL. These preliminary results confirm that the part of the studied plant had a very good antimicrobial activity that was proportional to the serial concentrations of the tested extracts.


1970 ◽  
Vol 46 (4) ◽  
pp. 513-518 ◽  
Author(s):  
V Subhadradevi ◽  
K Asokkumar ◽  
M Umamaheswari ◽  
AT Sivashanmugam ◽  
JR Ushanandhini ◽  
...  

Since ancient times plant as sources of medicinal compounds have continued to play a dominant role in the maintenance of human health. To treat chronic and infectious diseases plants used in traditional medicine contain a wide range of ingredients. In this regard, Cassia auriculata L. (Caesalpiniaceae) is widely used in Ayurvedic medicine as a tonic, astringent and as a remedy for diabetes, conjunctivitis, ulcers, leprosy, skin and liver diseases. The aim of present study was to evaluate the antimicrobial activity of ethanolic extract of Cassia auriculata leaves and flowers (CALE & CAFE). CALE and CAFE exhibited broad spectrum antimicrobial activity against standard strains of Staphylococcus aureus, Escherichia coli and Bacillus subtilis and exhibited no antifungal activity against standard strains of Candida albicans and Aspergillus niger. Minimum inhibitory concentration (MIC) and Minimum bactericidal concentration (MBC) was carried out for CALE and CAFE. The results obtained in the present study indicate that the CALE and CAFE can be a potential source of natural antimicrobial agents. Key words: Cassia auriculata; Antimicrobial activity; Agar well diffusion method. DOI: http://dx.doi.org/10.3329/bjsir.v46i4.9600 BJSIR 2011; 46(4): 513-518


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Irma Zarwinda ◽  
Fauziah Fauziah ◽  
Shara Shevalinda ◽  
Dwi Putri Rejeki

Startfruit (Averrhoa bilimbi L.) is one the kind of plant that is widely used as a traditional herbal medicineto overcome various diseases i.e. diabetes mellitus, cough, rheumatism, thrush, diabetes, toothache, acne, etc. The secondary metabolites of the starfruit leaves contain flavonoids and tannins, whereby these activecompounds can be used as an antibacterial. This study aimed to determine the inhibiting power of starfruit leaf ethanol extract against Staphylococcus epidermidis at concentrations of 25%, 50%, 75%, and 100%. The research was conducted at the  AKAFARMA Laboratory and the Chemistry Laboratory , Faculty of Teacher Training and Education, Syiah Kuala University from June to July 2020. The research method was laboratory experimental using the disk diffusion method. The population of starfruit leaves was obtained from Lhokseumawe  using a purposive sampling technique. Ethanol extract of starfruit leaves with concentrations of 25%, 50%, 75%, and 100%. The diameter of the inhibition zone of the ethanol extract  from the starfruit leaves at  concentrations of 100%, 75%, 50%, and 25% were 15 mm, 12 mm, 11 mm and 10 mm, respectively. It can be concluded that  ethanol extract of starfruit leaves can inhibit the growth  of  Staphylococcus  epidermidis  with  a  maximum inhibitory concentration  of  100%,  which is classified  as a strong category.


Author(s):  
Surachai Techaoei ◽  
Pattaranut Eakwaropas ◽  
Khemjira Jarmkom ◽  
Warachate Khobjai

Objective: The objective of this study was to investigate the antimicrobial activity of Phellinus linteus against skin infectious pathogens, Staphylococcus epidermidis ATCC12228 and Propionibacterium acnes DMST 14916.Methods: Fungal fruiting bodies were extracted with 95% ethanol and ethyl acetate, and then, vaporized. The antimicrobial activities were determined by the disc diffusion method against Propionibacterium acnes DMST 14916 and Staphylococcus epidermidis ATCC12228 skin infectious pathogens. A minimum inhibitory concentration (MIC) and a minimum bactericidal concentration (MBC) for those crude extracts were determined. Finally, the chemical profile of crude extract was determined by using thin layer chromatography and GC-MS.Results: The result demonstrated that the ethanolic extraction had more active fractions with an MIC of 0.5 mg/ml against the growth of Propionibacterium acnes DMST 14916 and Staphylococcus epidermidis ATCC12228 and also showed a minimum inhibitory concentration (MBC) at a concentration of 1.0 mg/ml, while ethyl acetate-based solvents failed to develop on TLC according to Retention factor (Rf) values of 0.71-0.76. The GC-MS was applied to investigate the chemical profile of crude extract of Phellinus linteus, revealing a component of hexadecanoic acid and 9, 12-octadecadienoic acid.Conclusion: Phellinus linteus fruiting body extracts have great potential as antimicrobial compounds against Propionibacterium acnes DMST 14916 and Staphylococcus epidermidis ATCC12228. Thus, they can be used in the treatment of infectious diseases caused by bacterial pathogens. 


2013 ◽  
Vol 14 (5) ◽  
pp. 924-929 ◽  
Author(s):  
Reena Kulshrestha ◽  
J Kranthi ◽  
P Krishna Rao ◽  
Feroz Jenner ◽  
V Abdul Jaleel ◽  
...  

ABSTRACT Aim The present study was conducted to evaluate the efficacy of commercially available herbal toothpastes against the different periodontopathogens. Materials and methods Six herbal toothpastes that were commonly commercially available were included in the study. Colgate herbal, Babool, Meswak, Neem active, Dabur red toothpastes were tested for the study whereas sterile normal saline was used as control. Antimicrobial efficacies of dentifrices were evaluated against Streptococcus mutans and Actinobacillus actinomycetemcomitans. The antimicrobial properties of dentifrices were tested by measuring the maximum zone of inhibition at 24 hours on the Mueller Hinton Agar media inoculated with microbial strain using disk diffusion method. Each dentifrice was tested at 100% concentration (full strength). Results The study showed that all dentifrices selected for the study were effective against the entire test organism but to varying degree. Neem active tooth paste gave a reading of 25.4 mm as the zone of inhibition which was highest amongst all of the test dentifrices. Colgate Herbal and Meswak dentifrices recorded a larger maximum zone of inhibition, measuring 23 and 22.6 mm respectively, compared to other toothpastes. All other dentifrices showed the zone of inhibition to be between 17 and 19 mm respectively. Conclusion The antibacterial properties of six dentifrices were studied in vitro and concluded that almost all of the dentifrices available commercially had antibacterial properties to some extent to benefit dental health or antiplaque action. How to cite this article Jenner F, Jaleel VA, Kulshrestha R, Maheswar G, Rao PK, Kranthi J. Evaluating the Antimicrobial Activity of Commercially Available Herbal Toothpastes on Microorganisms Associated with Diabetes Mellitus. J Contemp Dent Pract 2013;14(5):924-929.


2018 ◽  
Vol 13 (8) ◽  
pp. 1934578X1801300 ◽  
Author(s):  
Mária Pl'uchtová ◽  
Teresa Gervasi ◽  
Qada Benameur ◽  
Vito Pellizzeri ◽  
Daniela Grul'ová ◽  
...  

Genus Mentha presents group of plants which are the most studied in family Lamiaceae. Aboveground parts are used for different purposes in pharmacy, food industry or confectionery. Most important is natural product extracted from leaves - essential oil (EO). The aim of presented experiment was to demonstrate different chemotype and compare antibacterial activity of two Mentha species EO. Plant samples were obtained from various environments – from Slovakia and from Italy. Dominant compounds were determined by GC/MS. The results showed high amount of menthol and menthone in tested Slovak peppermint EO. On the other hand, carvone and 1,8-cineole were determinate as dominant compounds in Italian spearmint EO. The antimicrobial activity of the EO was investigated by disc diffusion and broth micro dilution methods. EO was evaluated for their antibacterial activity against 7 microorganisms: Enterobacter cloacae, Salmonella spp., Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Streptococcus pyogenes. The determination results of antibacterial activity by agar disk diffusion method ranged from 7 to 14 mm of the growth inhibition zone. MIC of tested mint EO varied from 0.625 to 2.5 μg/mL. In addition, both EO showed relatively the same antibacterial activity against the selected Gram-negative bacteria. However, there is a variation in the antibacterial activity against Gram-positive bacteria.


2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Pavithra L. Jayatilake ◽  
Helani Munasinghe

Endophytic and rhizosphere fungi are understood to be aiding the host plant to overcome a range of biotic and abiotic stresses (nutrition depletion, droughts, etc.) hence, they remain to be reservoirs of plethora of natural products with immense use. Consequently, this investigation of endophytic and rhizosphere fungi isolated from Mikania cordata (a perennial vine that is well established in Sri Lanka) for their antimicrobial properties was performed with the aim of future derivation of potential beneficial pharmaceutical products. Leaves, twigs, and roots of M. cordata were utilized to isolate a total of 9 endophytic fungi out of which the highest amount (44%) accounted was from the twigs. A sample of the immediate layer of soil adhering to the root of M. cordata was utilized to isolate 15 rhizosphere fungi. Fusarium equiseti and Phoma medicaginis were endophytes that were identified based on colony and molecular characteristics. The broad spectrum of antimicrobial activity depicted by F. equiseti (MK517551) was found to be significantly greater (p≤0.05, inhibitory against Bacillus cereus ATCC 11778, Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 25853) than P. medicaginis (MK517550) (inhibitory against Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 25853) as assessed using the Kirby-Bauer disk diffusion method. Trichoderma virens and Trichoderma asperellum were rhizospere fungi that exhibited remarkable antimicrobial properties against the test pathogens chosen for the study. T. asperellum indicated significantly greater bioactivity against all four bacterial pathogens and Candida albicans ATCC 10231 under study. The ranges of minimum inhibitory concentrations (MICs) of the fungi depicting antimicrobial properties were determined. The results obtained suggest that F. equiseti, P. medicaginis, T. asperellum, and T. virens of M. cordata harness bioprospective values as natural drug candidates. This is the first report on isolation and evaluation of the antimicrobial properties of endophytic and rhizosphere fungi of Mikania cordata.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Ana Carolina Oliveira Silva ◽  
Elidiane Fonseca Santana ◽  
Antonio Marcos Saraiva ◽  
Felipe Neves Coutinho ◽  
Ricardo Henrique Acre Castro ◽  
...  

The development of the present study was based on selections using random, direct ethnopharmacological, and indirect ethnopharmacological approaches, aiming to evaluate which method is the best for bioprospecting new antimicrobial plant drugs. A crude extract of 53 species of herbaceous plants collected in the semiarid region of Northeast Brazil was tested against 11 microorganisms. Well-agar diffusion and minimum inhibitory concentration (MIC) techniques were used. Ten extracts from direct, six from random, and three from indirect ethnopharmacological selections exhibited activities that ranged from weak to very active against the organisms tested. The strain most susceptible to the evaluated extracts wasStaphylococcus aureus. The MIC analysis revealed the best result for the direct ethnopharmacological approach, considering that some species yielded extracts classified as active or moderately active (MICs between 250 and 1000 µg/mL). Furthermore, one species from this approach inhibited the growth of the threeCandidastrains. Thus, it was concluded that the direct ethnopharmacological approach is the most effective when selecting species for bioprospecting new plant drugs with antimicrobial activities.


Sign in / Sign up

Export Citation Format

Share Document