THE EFFECT OF THE ADDITION OF ZEOLITE PARTICLES ON THE PERFORMANCE CHARACTERISTICS OF SINTERED COPPER MATRIX COMPOSITES

Tribologia ◽  
2018 ◽  
Vol 282 (6) ◽  
pp. 51-62
Author(s):  
Marcin KARGUL ◽  
Joanna BOROWIECKA-JAMROZEK ◽  
Marek KONIECZNY

The paper presents the results of research on the possibilities of producing and using copper–zeolite composites obtained by powder metallurgy. The zeolite powder (0.0–0.2 mm fraction) used in the experiments was ground tuff rock extracted from the Kucin Quarry (VSK PRO-ZEO s.r.o.) in Slovakia. The as-delivered material was imaged and analysed using the SEM/EDS and XRD techniques. Before the sintering process, one-sided pressing was applied to the hydraulic press at a pressure of 620 MPa. The sintering process was carried out in a laboratory tube furnace at 900°C in an atmosphere of dissociated ammonia. The sintering time was 60 minutes. The resulting agglomerates were subjected to the following tests: measurements of density, hardness, electrical conductivity, and abrasion resistance. Observations of the microstructure on metallographic specimens made from the sintered samples were also performed using a scanning electron microscope (SEM). Zeolite was introduced into the copper matrix in the amounts of 2.5, 5, 7.5, and 10% by weight. The introduction of zeolite particles into the matrix as the strengthening phase caused an increase in the hardness of sinters while lowering a density and electrical conductivity. The introduction of zeolite particles caused a decrease in abrasion resistance for a composite containing up to 7.5% zeolite. The increase in abrasion resistance was observed for the composite containing 10% zeolite particles.

2013 ◽  
Vol 27 (19) ◽  
pp. 1341025 ◽  
Author(s):  
YU HONG ◽  
XIAOLI CHEN ◽  
WENFANG WANG ◽  
YUCHENG WU

Copper-matrix composites reinforced with SiC particles are prepared by mechanical alloying. The microstructure characteristics, relative density, hardness, tensile strength, electrical conductivity, thermal conductivity and wear properties of the composites are investigated in this paper. The results indicate that the relative density, macro-hardness and mechanical properties of composites are improved by modifying the surface of SiC particles with Cu and Ni . The electrical conductivity and thermal conductivity of composites, however, are not obviously improved. For a given volume fraction of SiC , the Cu / SiC ( Ni ) has higher mechanical properties than Cu / SiC ( Cu ). The wear resistance of the composites are improved by the addition of SiC . The composites with optimized interface have lower wear rate.


2013 ◽  
Vol 749 ◽  
pp. 141-144
Author(s):  
Qing Yang ◽  
Jun Tao Zou ◽  
Zhao Liu ◽  
Xiao Jiang Yu

Cu/MgB2 composites with different content of MgB2 (10, 20, 30 vol.%) were fabricated by vacuum sintering of copper and MgB2 powders. The effects of MgB2 content and sintering process on the properties of Cu/MgB2 composites including the microstructures, relative density, electrical conductivity and hardness were then investigated. The results showed that the distribution uniformity of MgB2 on copper matrix decreased obviously with the increase of MgB2 content, the hardness of Cu/MgB2 composites increased and the relative density decreased slightly though the electrical conductivity decreased greatly. The relative density and hardness of Cu/MgB2 composites increased after the repressing-resintering process, the electrical conductivity was also improved slightly.


2014 ◽  
Vol 21 (1) ◽  
pp. 29-38
Author(s):  
Oscar Marcelo Suárez ◽  
Natalia Cortes-Urrego ◽  
Sujeily Soto-Medina ◽  
Deborah Marty-Flores

AbstractAn aluminum-copper matrix composite reinforced with aluminum diboride particles was studied at high temperature via thermomechanometry experiments. The matrix contained 2 wt% Cu, whereas the amount of boron forming AlB2 ranged from 0 to 4 wt%, i.e., 0 to 8.31 vol% of diboride particles. In the first segment of the research, we demonstrated that larger amounts of AlB2 particles raised the composite hardness even at 300°C. To assess the material creep behavior, another set of specimens were tested under 1 N compression at 400°C and 500°C for 12 h. Higher levels of AlB2 allowed the composites to withstand compression creep deformations at those temperatures. By using existing creep models developed for metal matrix composites we were able to determine that viscous slip deformation was the dominant deformation mechanism for the temperatures and stress levels used in our experiments. Additionally, the computed creep activation energy for these aluminum matrix composites were found comparable to the energies reported for other similar materials, for instance, Al/SiCp composites.


2019 ◽  
Vol 8 (1) ◽  
pp. 285-292 ◽  
Author(s):  
Jiang Feng ◽  
Shuhua Liang ◽  
Xiuhua Guo ◽  
Yi Zhang ◽  
Kexing Song

Abstract Copper matrix composites reinforced with 1, 3, 5, 7 vol.% Cu-coated SiC whiskers of consistent orientation (SiCw/Cu) were prepared by powder metallurgy and hot extrusion. The microstructure of composites was investigated by scanning electron microscopy. The SiC whiskers were arranged along the direction of hot extrusion and distributed uniformly. The composites were fabricated into specimens with different whisker orientations, and their electrical conductivity was tested. The effects of SiC whiskers orientation and content on the electrical conductivity of composites were investigated through experiment. Results show that the SiC whiskers content was the major factor affecting the electrical conductivity of the composites. With increasing SiC whisker orientations angel, the electrical conductivity of composites is improved. The electrical conductivity model has been established by taking into account the SiC whiskers content, whisker orientation and microstructure parameters, and the results were in good agreement with experimental data. Graphical abstract: Copper matrix composites reinforced with SiC whiskers of consistent orientation were prepared. The orientation of SiC whiskers changes from 0∘ to 90∘, resulting in electrical conductivity anisotropy of composites.


2009 ◽  
Vol 79-82 ◽  
pp. 1579-1582
Author(s):  
Chang Chun Wang ◽  
Guang Hui Min ◽  
Suk Bong Kang

SiCp reinforced copper matrix composites with the reinforcement content of 30-50vol. % were fabricated by hot pressing using Cu-coated and uncoated SiC powder. And the microstructure and electrical conductivity of the composites were also studied. The results showed that with the increasing of SiCp particle size, the electrical conductivity of the composites also increased. And the oxides in the composites can decrease the electrical conductivity of the composites obviously. The electrical conducting property of the composites can be improved by the copper coating layer and suitable annealing treatment. It provided important data for the application of SiCp/Cu composites as electronic packaging materials.


2011 ◽  
Vol 415-417 ◽  
pp. 2244-2247 ◽  
Author(s):  
Feng Yan ◽  
Rong Xin Guo ◽  
Hai Ting Xia ◽  
Hai Yu ◽  
Yu Bo Zhang

The copper matrix composites reinforced by different WCP volume fraction were fabricated via Vacuum Hot-pressed Sintering technique. The tensile performance and fracture behavior of WCP/Cu composites were studied by uniaxial tension tests and the fracture surfaces were examined by SEM. The test results of mechanical properties show that the WCP/Cu composites exhibit obvious improvement of tensile property comparing with that of the matrix. The fracture surface morphology indicate a trend that the fracture of WCP/Cu composites changes from debonding to cleavage with the increase of the WCP volume fraction.


Sign in / Sign up

Export Citation Format

Share Document