scholarly journals Evaluation of the Use of Advanced Ozone Oxidative Process in Reducing the Danger of Environmental Toxicity by Endocrine Interferences of Magistral Pharmacy

2021 ◽  
Author(s):  
Thais Francinne ◽  
Suellen Zucco Bez ◽  
Julia Carolina Soares ◽  
Sabrina Martins da Rosa ◽  
Aline Mirian Paszuck ◽  
...  

The presence of emerging pollutants in the waters has been observed worldwide, resulting from improper domestic disposal, non-recommended veterinarian use, and product waste from pharmaceutical industries and magistral pharmacies. The contamination provoked, besides causing damage to the environment, remains in potable water even after passing through the treatment plants. The objective of this work was to verify the existence of environmental toxicity of raw effluents from gross pharmacy laboratories, as well as the same effluent treated with POA via ozone in the time of 1 hour, having as a risk parameter the changes that they cause in Euglena gracilis algae. Photosynthetic efficiency tests were conducted via PAM, and chlorophyll concentration and behavioral evaluation were checked via NGTOX. The results demonstrate that the hormone laboratory was considered the most impacted effluent treated, with lower production and significant chlorophyll reduction. It presented reduction in photosynthetic post-ozonation activity, due to the hormone decomposition, oxidative potential and ethylene formation. Effluents from psychotropic and solid laboratories presented different production demand, but similar follow-up, with impact on the behavior and algae’s photosynthetic activity, due to the presence of active substances on cellular action potentials. The treated effluent from dermocosmetics laboratory influenced the chlorophyll concentration, as well as the general speed and velocity of surface ascent. The behavioral differences between the laboratories and the pre and post-ozonation conditions demonstrate that the effluent treatment should be distinguished, according to the characteristics of the manipulated substances in each laboratory.

2021 ◽  
Vol 2 (2) ◽  
pp. 64-81
Author(s):  
Thais Francine de Freitas Oliveira ◽  
Julia Carolina Soares ◽  
Suellen Zucco Bez ◽  
Heloiza de Braga ◽  
Qushmua Alzahran ◽  
...  

The presence of emerging pollutants in the waters has been observed worldwide, resulting from improper domestic disposal, non-recommended veterinarian use, and product waste from pharmaceutical industries and magistral pharmacies. The contamination provoked, besides causing damage to the environment, remains in potable water even after passing through the treatment plants. The objective of this work was to verify the existence of environmental toxicity of raw effluents from gross pharmacy laboratories, as well as the same effluent treated with POA via ozone in the time of 1 hour, having as a risk parameter the changes that they cause in Euglena gracilis algae. Photosynthetic efficiency tests were conducted via PAM, and chlorophyll concentration and behavioral evaluation were checked via NGTOX. The results demonstrate that the hormone laboratory was considered the most impacted effluent treated, with lower production and significant chlorophyll reduction. It presented reduction in photosynthetic post-ozonation activity, due to the hormone decomposition, oxidative potential and ethylene formation. Effluents from psychotropic and solid laboratories presented different production demand, but similar follow-up, with impact on the behavior and algae’s photosynthetic activity, due to the presence of active substances on cellular action potentials. The treated effluent from dermocosmetics laboratory influenced the chlorophyll concentration, as well as the general speed and velocity of surface ascent. The behavioral differences between the laboratories and the pre and post-ozonation conditions demonstrate that the effluent treatment should be distinguished, according to the characteristics of the manipulated substances in each laboratory.


1998 ◽  
Vol 13 (1) ◽  
pp. 3-9 ◽  
Author(s):  
L. Ferrari ◽  
E. Seregni ◽  
A. Martinetti ◽  
B Van Graafeiland ◽  
S. Nerini-Molteni ◽  
...  

Neuroendocrine tumors (NETs) are rare neoplasms characterized by a low proliferative index and, in some cases, a favorable prognosis. These tumors often overproduce and release biologically active substances that are responsible for severe syndromes. Tumor marker measurement provides the clinician with useful information for the management of NET patients. The substances released by overproducing tumors are currently used as biomarkers, but there is a need for sensitive markers also for the “biochemically silent” NETs. The most effective and reliable blood marker available today is chromogranin A (CgA). Because of its high sensitivity and specificity, this glycoprotein can be used for the diagnosis, prognosis and follow-up of NETs. Furthermore, CgA measurement can be used for monitoring those tumors not overproducing or releasing any hormones or biological amines. This paper is a synthetic review on the value of CgA in NET management and reports our experiences with CgA measurement in NET patients.


1979 ◽  
Vol 36 (9) ◽  
pp. 1049-1059 ◽  
Author(s):  
Donald J. McLeay ◽  
David A. Brown

Growth of juvenile coho salmon (Oncorhynchus kisutch) fed a limiting ration (70% of satiation) in experimental stream channels was not altered significantly by prolonged exposure to untreated or laboratory-treated (fermented) bleached kraft pulpmill effluent (BKME), although mean weights for control fish were consistently lower than those for all effluent-exposed groups from 100 to 200 d. Body protein, fat, and moisture content were unaffected by treatment at 30, 90, and 200 d. Fish exposed to all strengths of untreated or treated BKME (i.e. untreated concentrations equivalent by volume to 0.05, 0.1, 0.2, 0.3, and 0.5 of the untreated effluent's 96-h LC50 value; and treated concentrations equivalent by volume to 0.2 and 1.0 LC50) showed significant decreases in serum albumin levels at 30 d, whereas these recovered to control values at 90 and 200 d. The serum electrolytes Na+, K+, and Ca++ were unaffected by treatment at 200 d and not measured for other exposures. Liver and muscle glycogen reserves were decreased significantly by continuous exposure of fish to untreated or treated BKME concentrations for 30 d. These values recovered to control levels at 90 d and were unaffected or depressed at 200 d. Plasma glucose levels at 30 d were elevated significantly in all BKME-exposed groups except those held in the lowest concentration of untreated or treated effluent. Blood sugar values at 90 d were increased only by the highest strength of untreated or treated BKME; whereas at 200 d these values were elevated from control levels in all effluent-exposed groups. Levels of plasma lactic acid were unmeasured at 30 d, increased at 90 d in all BKME-exposed groups except the lowest strength of untreated effluent, and elevated at 200 d in all effluent-exposed groups. The stamina of these fish as determined by critical swimming speeds in freshwater was unaffected by exposure to pulpmill effluent for 90 d and unmeasured for other exposures. Based on the changes in intermediary metabolism for BKME-exposed fish at 30, 90, and 200 d, it was concluded that these fish remained in a state of chronic stress and did not acclimate to prolonged exposure to pulpmill effluent. Treatment of this waste reduced or removed its acute (lethal) toxicity but did not alter the biochemical effects caused by chronic exposure. Key words: stress, growth, proximate analyses, albumin, electrolyte, glycogen, glucose, lactate, critical swimming speed, acclimation


2005 ◽  
Vol 51 (10) ◽  
pp. 221-229 ◽  
Author(s):  
P.D. Beavers ◽  
I.K. Tully

Small communities that are sewered by either package sewage treatment plants or on-site sewerage facilities are finding that the ground and surface waters are being contaminated. Nitrogen, which typically is not removed in these conventional systems, is a major concern. This project evaluated the capability of four sewage treatment technologies to reduce the amount of nitrogen being discharged in the effluent to the receiving environment. The four sewage treatment processes evaluated include a recirculating sand filter, biofilter, slow sand filter and constructed subsurface flow wetland. These processes were evaluated for their capability to reduce nitrogen, phosphorus, BOD5 and TSS. The primary objective of the project was to evaluate the capability of these treatment processes to reduce nitrogen using biological processes nitrification and denitrification. This paper reports on the performance of these processes to reduce nitrogen. The study demonstrated that the biofilter was capable of removing from a primary treated influent 40% of the total nitrogen. For the same quality influent the recirculating sand filter was capable of removing 35% of the total nitrogen. Secondary treated effluent was fed to the slow sand filter and the subsurface flow wetland. There was a 52% reduction in total nitrogen through the wetland however there was virtually no reduction in total nitrogen through the slow sand filter.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6626 ◽  
Author(s):  
Marcin Dębowski ◽  
Marcin Zieliński

Technological solutions allowing the increase of the technological efficiency of anaerobic methods of wastewater treatment are still under investigation. The weaknesses of these solutions can be limited by the use of active fillings. The aim of the present study was to determine the impact of fluidized active filling on the effectiveness of anaerobic treatment of sugar-industry effluent, the production efficiency and the qualitative composition of the biogas produced. High, comparable (p = 0.05) effluent treatment results were observed at tested organic load rates between 4.0 and 6.0 kg COD (Chemical Oxygen Demand)/m3·d. The COD removal rate reached over 74%, biogas yields ranged from 356 ± 25 to 427 ± 14 dm3/kg CODremoved and the average methane contents were approximately 70%. A significant decrease in effluent treatment efficiency and methane fermentation was observed after increasing the organic load rate to 8.0 kg COD/m3·d, which correlated with decreased pH and FOS/TAC (volatile organic acid and buffer capacity ratio) increased to 0.44 ± 0.2. The use of fluidized active filling led to phosphorus removal with an efficiency ranged from 64.4 ± 2.4 to 81.2 ± 8.2% depending on the stage. Low concentration of total suspended solids in the treated effluent was also observed.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Abhay Raj ◽  
Sharad Kumar ◽  
Izharul Haq ◽  
Mahadeo Kumar

Common effluent treatment plant (CETP) is employed for treatment of tannery effluent. However, the performance of CETP for reducing the genotoxic substances from the raw effluent is not known. In this study, phytotoxic and genotoxic effects of tannery effluents were investigated in mung bean (Vigna radiata (L.) Wilczek). For this purpose, untreated and treated tannery effluents were collected from CETP Unnao (UP), India. Seeds of mung bean were grown in soil irrigated with various concentrations of tannery effluents (0, 25, 50, 75, and 100%) for 15 days. Inhibition of seed germination was 90% by 25% untreated effluent and 75% treated effluent, compared to the control. Plant growth was inhibited by 51% and 41% when irrigated with untreated and treated effluents at 25% concentration. RAPD technique was used to evaluate the genotoxic effect of tannery effluents (untreated and treated) irrigation on the mung bean. The RAPD profiles obtained showed that both untreated and treated were having genotoxic effects on mung bean plants. This was discernible with appearance/disappearance of bands in the treatments compared with control plants. A total of 87 RAPD bands were obtained using eight primers and 42 (48%) of these showed polymorphism. Irrigating plants with untreated effluent caused 12 new bands to appear and 18 to disappear. Treated effluent caused 8 new bands and the loss of 15 bands. The genetic distances shown on the dendrogram revealed that control plants and those irrigated with treated effluent were clustered in one group (joined at distance of 0.28), whereas those irrigated with untreated effluent were separated in another cluster at larger distance (joined at distance of 0.42). This indicates that treated effluent is less genotoxic than the untreated. Nei’s genetic similarity indices calculated between the treatments and the control plants showed that the control and the plants irrigated with treated tannery effluent had a similarity index of 0.75, the control and plants irrigated with untreated 0.65, and between the treatments 0.68. We conclude that both untreated and treated effluents contain genotoxic substances that caused DNA damage to mung beans. CETP Unnao removes some, but not all, genotoxic substances from tannery effluent. Consequently, use of both untreated and treated wastewater for irrigation poses health hazard to human and the environment.


Author(s):  
Christie O. Ize-Iyamua ◽  
Hilary I. Ifijen ◽  
Osaro K. Ize-Iyamu ◽  
Justina E. Ukpebor ◽  
Emmanuel E. Ukpebor

Chitosan, a naturally occurring biopolymer extracted from prawn heads was used in the treatment of crump rubber processing effluent for safe disposal into the environment. The triplicate analyses of the effluent samples obtained by composite sampling method indicated high levels of pollution which violated the permissible limits of environmental discharge standards; with a low DO of 0.63mg/L, BOD, 312.00±1.32mg/L and COD, 1069.58±2.42mg/L (mean±SD) respectively. Chitosan was analyzed according to standard procedures; it showed good coagulative potentials from the elemental analysis and a degree of deacetylation of 76.5%. The crump rubber processing effluent was treated with chitosan and Iron (III) Chloride respectively by coagulation and flocculation method and the results obtained via the physico-chemical characterization of the treated effluent showed that the use of chitosan as a coagulant compared favourably with Iron (III) Chloride after treatment. DO levels increased from 0.63mg/L to 3.90 mg/L. There were also remarkable reduction in the Turbidity, Biochemical Oxygen Demand (BOD) and the Chemical Oxygen Demand (COD) levels of the treated samples by over 80% respectively and 70% reduction in the nutrient levels. The efficacy of chitosan in comparison with Iron (III) Chloride suggests that it can be used as a replacement for synthetic coagulants based on its availability and environmental friendliness.


2019 ◽  
Author(s):  
◽  
Siyabonga Aubrey Mntambo

Amongst many tenacious emerging traces of lethal organic pollutants in wastewater, triclosan (TCS) is typically the often-encountered compound. This pollutant has been reported in the water circle, including surface water, wastewater treatment plants, groundwater, aquatic sediments and aquatic organisms and, to a lesser extent, drinking water, at levels in the nanograms to low micrograms per litre range. Triclosan mainly find its way into the human system through its extensive use in pharmaceutical industries over the recent years. Excessive exposure to this water pollutant may result in adverse conditions like hematological disorders such as blood cancer. Despite the variety of its negative effects, triclosan is still used as a preservative in many pharmaceutical personal care products (PPCPs), e.g. toothpaste, disinfectants, hand wash, cosmetics, soaps and medication. In light of the aforementioned applications, it is imperative to remove triclosan to accepted levels and find more efficient, low-cost and less energy consuming methods of its removal in order to counter the challenges of water scarcity in the country and its wastewater channels. In this study, a “fractionated approach” was used, as it accounts for the synthesis of selective polymeric membranes using a phase inversion by immersion precipitation technique. Hence, the quest to address these water challenges was through the application of polyvinylidene fluoride (PVDF) polymeric membranes for the removal of triclosan in effluent treatment plant (ETP) water. This was carried out by fabricating this polymer with selective micro composite particles called molecularly imprinted polymers (MIPs). This improved the mechanical behaviour and strength of the membrane. The MIPs were synthesised using a two-step bulk polymerisation process. The synthesized MIPs possess specific binding cavities within its structure. The PVDF membrane were functionalised with MIPs and were characterised using Scanning Electron Microscopy (SEM), for their morphological properties. Thermogravimetric analysis (TGA) was used to study their thermal behaviour and the Fourier transform infrared coupled with universal attenuated total reflectance (FTIR- ATR) was utilized to determine the functional groups present in the membrane. The dynamic mechanical analysis (DMA) was used to study the mechanical behaviour and strength of the membranes. The SEM images showed the equal distribution of micro particles on the membrane surface. The TGA analysis revealed that all the studied polymeric membranes were thermally stable up to an average temperature of 502°C. The FTIR-ATR analysis showed new absorption peaks that were brought by the functionalisation and revealed that the PVDF membrane does not interfere with the MIP chemical integrity despite being infused within the polymeric membrane. DMA revealed an improved stability and behaviour once the concentration of the additives was increased. Moreover, the water and porosity content percentage of the MIP infused PVDF membranes increased as the concentration of the adsorbent was increased. Wastewater samples were collected from an effluent treatment plant (ETP)and pre- treated before analysis. Experimental parameters such as sample size, contact time, stirring speed were optimised. The synthesised PVDF/MIP membranes had an adsorption efficiency of 97% TCS in membranes compared to PVDF/NIP and PVDF bare membrane which had 92%, 88%, respectively. This might be due to the effect of the binding sites of the additives. The analytical method had limits of detection (LOD) and limits of quantification (LOQ) of 0.22, 0.71 µgL-1 in wastewater effluent, respectively. The percentage recovery for the effluent samples was 68 %. The results obtained therefore shows that MIPs have the potential modifier for the development and continuous progress in PVDF membranes.


BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 8944-8964
Author(s):  
Erika Nascimben Santos ◽  
Claudia Mudadu Silva ◽  
Jorge Luiz Colodette ◽  
Samilly B. Zanith de Almeida ◽  
Antonio José Vinha Zanuncio ◽  
...  

The bleaching plant of a kraft pulp mill is the sector that consumes water and generates effluent with the highest volume. Water recycling is an attractive option to reduce water consumption and effluent generation. This study evaluated the technical feasibility of using treated effluent as washing water in the bleaching stages. The bleaching sequence was simulated in the laboratory using four types of washing water: deionized water, whitewater, low organic load effluent, and high organic load effluent. To achieve 90% ISO pulp brightness, the ClO2 consumption increased from 8.1 kg ClO2 odt-1 when using water to 13.8 and 16.3 kgClO2 odt-1 for the low and high organic effluents. Physical and optical tests of the hand-sheet papers did not show any statistical difference between various washing waters. The filtrates showed values that did not burden the efficiency of the effluent treatment plant. It was possible to use effluent in the bleaching stages, considering that the filtrates and the produced paper complied with the quality standards.


Bioanalysis ◽  
2021 ◽  
Author(s):  
Hua Li ◽  
Maria Myzithras ◽  
Erica Bolella ◽  
Antony Leonard ◽  
Jennifer Ahlberg

Volumetric absorptive microsampling (VAMS) is increasingly utilized for both nonclinical and clinical pharmacokinetic studies. Currently, VAMS is employed as the sampling method for the detection of antibodies for coronavirus disease 2019. Biotherapeutics whole blood stability on VAMS presents as a critical concern for the health and pharmaceutical industries. In this follow-up to our previous publication, we evaluated daclizumab and trastuzumab whole blood sample stability on VAMS. The drug recovery data we observed at room temperature for short term and -80°C for long term was very encouraging. The knowledge could help us better understand and plan important investigation timelines, especially pandemic situations where human whole blood samples from a large population are collected and in urgent need of data analysis.


Sign in / Sign up

Export Citation Format

Share Document