scholarly journals Can Polyphenols be Used as Anti-Inflammatory Agents against Covid-19 (SARS-CoV-2)-Induced Inflammation?

2021 ◽  
Author(s):  
Volkan Gelen ◽  
Abdulsamed Kükürt ◽  
Emin Şengül ◽  
Ömer Faruk Başer ◽  
Mahmut Karapehlivan

Covid-19 is the causative agent of a beta coronavirus that causes severe inflammatory pneumonia, so excessive inflammation is considered a risk factor for the disease. In Covid-19 disease, an inflammatory response develops in the body. It has been reported as a result of various studies that this response causes damage to various organs and tissues, especially the lungs. According to reports, cytokine storms are largely responsible for death in such patients. Some of the consequences of severe inflammation and cytokine storms include acute respiratory distress syndrome, acute lung injury, and multiple organ dysfunction syndromes. Many studies are showing that there may be various agents to prevent or treat these effects of Covid-19 disease. Some of these agents are phenolic compounds. Phenolic compounds are the most abundant substances in vegetables and fruits. Inflammasomes, their function. It has been stated that phenolic compounds inhibit inflammation by inhibiting cytosolic multiprotein complexes that assemble in response to cytosolic pathogen-associated molecular patterns (PAMPs), and damage-associated molecular patterns (DAMPs) to form active forms of IL-1β and IL-18. It suggested that Apigenin, Resveratrol, Morin, and Silymarin an anti-inflammatory, antioxidant, anti-viral, and anti-microbial compound could be a potential therapeutic agent for severe inflammation from Covid-19.

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Ali Saeedi-Boroujeni ◽  
Mohammad-Reza Mahmoudian-Sani

AbstractSARS-CoV-2 is a betacoronavirus causing severe inflammatory pneumonia, so that excessive inflammation is considered a risk factor for the disease. According to reports, cytokine storm is strongly responsible for death in such patients. Some of the consequences of severe inflammation and cytokine storms include acute respiratory distress syndrome, acute lung injury, and multiple organ dysfunction syndromes. Phylogenetic findings show more similarity of the SARS-CoV-2 virus with bat coronaviruses, and less with SARS-CoV. Quercetin is a carbohydrate-free flavonoid that is the most abundant flavonoid in vegetables and fruits and has been the most studied to determine the biological effects of flavonoids. Inflammasomes are cytosolic multi-protein complexes assembling in response to cytosolic PAMP and DAMPs, whose function is to generate active forms of cytokines IL-1β and IL-18. Activation or inhibition of the NLRP3 inflammasome is affected by regulators such as TXNIP, SIRT1 and NRF2. Quercetin suppresses the NLRP3 inflammasome by affecting these regulators. Quercetin, as an anti-inflammatory, antioxidant, analgesic and inflammatory compound, is probably a potential treatment for severe inflammation and one of the main life-threatening conditions in patients with COVID-19.


2018 ◽  
Vol 46 (8) ◽  
pp. 930-943 ◽  
Author(s):  
Zaher A. Radi

Pathophysiologically, the classification of acute kidney injury (AKI) can be divided into three categories: (1) prerenal, (2) intrinsic, and (3) postrenal. Emerging evidence supports the involvement of renal tubular epithelial cells and the innate and adaptive arms of the immune system in the pathogenesis of intrinsic AKI. Pro-inflammatory damage-associated molecular patterns, pathogen-associated molecular patterns, hypoxia inducible factors, toll-like receptors, complement system, oxidative stress, adhesion molecules, cell death, resident renal dendritic cells, neutrophils, T and B lymphocytes, macrophages, natural killer T cells, cytokines, and secreted chemokines contribute to the immunopathogenesis of AKI. However, other immune cells and pathways such as M2 macrophages, regulatory T cells, progranulin, and autophagy exhibit anti-inflammatory properties and facilitate kidney tissue repair after AKI. Thus, therapies for AKI include agents such as anti-inflammatory (e.g., recombinant alkaline phosphatase), antioxidants (iron chelators), and apoptosis inhibitors. In preclinical toxicity studies, drug-induced kidney injury can be seen after exposure to a nephrotoxicant test article due to immune mechanisms and dysregulation of innate, and/or adaptive cellular immunity. The focus of this review will be on intrinsic AKI, as it relates to the immune and renal systems cross talks focusing on the cellular and pathophysiologic mechanisms of AKI.


2018 ◽  
Vol 08 (01) ◽  
pp. 025-031 ◽  
Author(s):  
Diana Pang ◽  
Dalia Bashir ◽  
Joseph Carcillo ◽  
Trung Nguyen ◽  
Rajesh Aneja ◽  
...  

AbstractThe incidence of multiple organ dysfunction syndrome (MODS) in sepsis varies from 17 to 73% and furthermore, increases the risk of death by 60% when controlled for the number of dysfunctional organs. Several MODS phenotypes exist, each unique in presentation and pathophysiology. Common to the phenotypes is the stimulation of the immune response by pathogen-associated molecular patterns (PAMPs), or danger-associated molecular patterns (DAMPs) causing an unremitting inflammation. Two of the MODS phenotypes are discussed in detail, thrombocytopenia-associated multiple organ failure (TAMOF) and the hyperinflammatory phenotype–macrophage activating syndrome (MAS) and hemophagocytic lymphohistiocytosis (HLH). In the end, we will briefly review the role of mitochondrial dysfunction as a significant contributor to the pathogenesis of MODS.


Life ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 917
Author(s):  
Giuseppe Ietto ◽  
Francesco Amico ◽  
Giuseppe Pettinato ◽  
Valentina Iori ◽  
Giulio Carcano

A laparoscopic approach is suggested with the highest grade of recommendation for acute cholecystitis, perforated gastroduodenal ulcers, acute appendicitis, gynaecological disorders, and non-specific abdominal pain (NSAP). To date, the main qualities of laparoscopy for these acute surgical scenarios are clearly stated: quicker surgery, faster recovery and shorter hospital stay. For the remaining surgical emergencies, as well as for abdominal trauma, the role of laparoscopy is still a matter of debate. Patients might benefit from a laparoscopic approach only if performed by experienced teams and surgeons which guarantee a high standard of care. More precisely, laparoscopy can limit damage to the tissue and could be effective for the reduction of the overall amount of cell debris, which is a result of the intensity with which the immune system reacts to the injury and the following symptomatology. In fact, these fragments act as damage-associated molecular patterns (DAMPs). DAMPs, as well as pathogen associated molecular patterns (PAMPs), are recognised by both surface and intracellular receptors of the immune cells and activate the cascade which, in critically ill surgical patients, is responsible for a deranged response. This may result in the development of progressive and multiple organ dysfunctions, manifesting with acute respiratory distress syndrome (ARDS), coagulopathy, liver dysfunction and renal failure. In conclusion, none of the emergency surgical scenarios preclude laparoscopy, provided that the surgical tactic could ensure sufficient cleaning of the abdomen in addition to resolving the initial tissue damage caused by the “trauma”.


2020 ◽  
Vol 26 (26) ◽  
pp. 3085-3095 ◽  
Author(s):  
Yuanjin Gong ◽  
Chang Chang ◽  
Xi Liu ◽  
Yan He ◽  
Yiqi Wu ◽  
...  

Stimulator of interferon genes is an important innate immune signaling molecule in the body and is involved in the innate immune signal transduction pathway induced by pathogen-associated molecular patterns or damage-associated molecular patterns. Stimulator of interferon genes promotes the production of type I interferon and thus plays an important role in the innate immune response to infection. In addition, according to a recent study, the stimulator of interferon genes pathway also contributes to anti-inflammatory and anti-tumor reactions. In this paper, current researches on the Stimulator of interferon genes signaling pathway and its relationship with tumor immunity are reviewed. Meanwhile, a series of critical problems to be addressed in subsequent studies are discussed as well.


2018 ◽  
Vol 6 (3) ◽  
pp. 264-279
Author(s):  
Morrison R. Doelle ◽  
Benjamin M. Predmore

Hemorrhagic shock (HS) result in multiple organ dysfunction syndrome (MODS) and inflammatory response. It is one of the world's leading causes of death within the first 40 years of life and thus a significant health problem. The exact mechanism is not clear. TLRs are stimulated both by pathogen-associated molecular patterns as well as by damage-associated molecular patterns, including trauma and hemorrhagic shock. In the present study, we investigated whether the SARM1 responsible for mediats-TLR9-induces inflammatory process and vascular hyperpermeability following hemorrhagic shock. Here we produced an in vivo model of severe hemorrhagic shock in adult wild type mice (40 ± 2 mmHg for 90 min, fluid resuscitation for 30 min) was employed. Mesenteric postcapillary venules were examined for changes in hyperpermeability by intravital microscopy. Blood samples were collected for measurement of tumor necrosis factor (TNF) using ELISA. Biopsies were obtained from organs for light microscopic examination. Our data suggest that SARM1 promising a new mechanisim of TLR9 involved in regulation of hemorrhagic shock and therapeutic target for the treatment of hemorrhagic shock.


Author(s):  
Charalampos Papadopoulos ◽  
Maria Panopoulou ◽  
Konstantinos Anagnostopoulos ◽  
Ioannis Tentes

Background: Apart from their main function as oxygen carriers in vertebrates, erythrocytes are also involved in immune regulation. By circulating throughout the body, the erythrocytes are exposed and interact with tissues that are damaged as a result of a disease. Methods: In this study, we summarize the literature regarding the contribution of erythrocytes to immune regulation and metabolism. Results: Under the circumstances of a disease state, the erythrocytes may lose their antioxidant capacity and release Damage Associated Molecular Patterns, resulting in regulation of innate and adaptive immunity. In addition, the erythrocytes scavenge and affect the levels of chemokines, circulating cell-free mtDNA and C3b attached immune complexes. Furthermore, through surface molecules, erythrocytes control the function of T lymphocytes, macrophages and dendritic cells. Through an array of enzymes, red blood cells contribute to the pool of blood’s bioactive lipids. Finally, the erythrocytes contribute to reverse cholesterol transport, through various mechanisms. Conclusion: Our study is highlighting overlooked molecular interactions between erythrocytes and immunity and metabolism, which could lead to the discovery of potent therapeutic targets for immunometabolic diseases.


2016 ◽  
Vol 11 (1) ◽  
pp. 116-121 ◽  
Author(s):  
Milena Nasi ◽  
Alessandro Cristani ◽  
Marcello Pinti ◽  
Igor Lamberti ◽  
Lara Gibellini ◽  
...  

Purpose:Exercise exerts various effects on the immune system, and evidence is emerging on its anti-inflammatory effects; the mechanisms on the basis of these modifications are poorly understood. Mitochondrial DNA (mtDNA) released from damaged cells acts as a molecule containing the so-called damage-associated molecular patterns and can trigger sterile inflammation. Indeed, high plasma levels of mtDNA are associated to several inflammatory conditions and physiological aging and longevity. The authors evaluated plasma mtDNA in professional male volleyball players during seasonal training and the possible correlation between mtDNA levels and clinical parameters, body composition, and physical performance.Methods:Plasma mtDNA was quantified by real-time PCR every 2 mo in 12 professional volleyball players (PVPs) during 2 consecutive seasons. As comparison, 20 healthy nonathlete male volunteers (NAs) were analyzed.Results:The authors found lower levels of mtDNA in plasma of PVPs than in NAs. However, PVPs showed a decrease of circulating mtDNA only in the first season, while no appreciable variations were observed during the second season. No correlation was observed among mtDNA, hematochemical, and anthropometric parameters.Conclusions:Regular physical activity appeared associated with lower levels of circulating mtDNA, further confirming the protective, anti-inflammatory effect of exercise.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Hagen Andruszkow ◽  
Juliane Veh ◽  
Philipp Mommsen ◽  
Christian Zeckey ◽  
Frank Hildebrand ◽  
...  

Obesity is known as an independent risk factor for various morbidities. The influence of an increased body mass index (BMI) on morbidity and mortality in critically injured patients has been investigated with conflicting results. To verify the impact of weight disorders in multiple traumatized patients, 586 patients with an injury severity score >16 points treated at a level I trauma center between 2005 and 2011 were differentiated according to the BMI and analyzed regarding morbidity and outcome. Plasma levels of interleukin- (IL-) 6 and C-reactive protein (CRP) were measured during clinical course to evaluate the inflammatory response to the “double hit” of weight disorders and multiple trauma. In brief, obesity was the highest risk factor for development of a multiple organ dysfunction syndrome (MODS) (OR 4.209, 95%-CI 1.515–11.692) besides injury severity (OR 1.054, 95%-CI 1.020–1.089) and APACHE II score (OR 1.059, 95%-CI 1.001–1.121). In obese patients as compared to those with overweight, normal weight, and underweight, the highest levels of CRP were continuously present while increased systemic IL-6 levels were found until day 4. In conclusion, an altered posttraumatic inflammatory response in obese patients seems to determine the risk for multiple organ failure after severe trauma.


Sign in / Sign up

Export Citation Format

Share Document