scholarly journals A Full Adder Design with CNFETs for Real Time, Fault Tolerant and Mission Critical Applications

2020 ◽  
Vol 24 (2) ◽  
Author(s):  
Avireni Srinivasulu ◽  
Jitendra Kumar Saini ◽  
Renu Kumawat

The VLSI based circuits often pose challenges in the form of various faults (such as transient faults, permanent faults, stuck-at-faults). These faults appear even after testing also. They occur because of reduction in the size of the circuit or during realtime implementation, as these faults are difficult to detect. It is very important to detect and rectify all such faults to make the system foolproof and achieve expected functionality. In this paper, 12 transistors based, full adder circuit (12T-FAC) using Carbon Nanotube Field Effect Transistor (CNFET) technology is proposed. The proposed design based on CNFET provides high fault resistance towards transient, permanent faults and works with least power, delay and power-delay product (PDP). Later, features like fault detection and correction circuit have been added in 12T-FAC. The final version of full adder circuit capable of correcting errors has been used in designing applications like multipliers. The proposed full adder circuit was designed with CNFET technology, simulated at 32 nm with supply voltage +0.9 V using the Cadence Virtuoso CAD tool. The model used is Stanford PTM.

2019 ◽  
Vol 11 (1) ◽  
pp. 80-87 ◽  
Author(s):  
Jitendra Kumar Saini ◽  
Avireni Srinivasulu ◽  
Renu Kumawat

The transformation from the development of enabling technology to mass production of consumer-centric semiconductor products has empowered the designers to consider characteristics like robustness, compactness, efficiency, and scalability of the product as implicit pre-cursors. The Carbon Nanotube Field Effect Transistor (CNFET) is the present day technology. In this manuscript, we have used CNFET as the enabling technology to design a 1-bit Full Adder (1b-FA16) with overflow detection. The proposed 1b-FA16 is designed using 16 transistors. Finally, the proposed 1b-FA16 is further used to design a Ripple Carry Adder (RCA), Carry Look Ahead Adder (CLA) circuit and RCA with overflow bit detection. Methods and Results: The proposed 1b-FA16 circuit was designed with CNFET technology simulated at 32 nm with a voltage supply of +0.9 V using the Cadence Virtuoso CAD tool. The model used is Stanford PTM. Comparison of the existing full adder designs with the proposed 1b-FA16 design was done to validate the improvements in terms of power, delay and Power Delay Product (PDP). Table 2, shows the results of comparison for the proposed 1b-FA16 with the existing full adder designs implemented using CNFET for parameters like power, delay and power delay product. Conclusion: It can be concluded that the proposed 1b-FA16 yielded better results as compared to the existing full adder designs implemented using CNFET. The improvement in power, delay and power delay product was approximately 11%, 9% and 24% respectively. Hence, the proposed circuit implemented using CNFET gives a substantial rate of improvements over the existing circuits.


2019 ◽  
Vol 9 (6) ◽  
pp. 4933-4936
Author(s):  
H. Ghabri ◽  
D. Ben Issa ◽  
H. Samet

The full adder is a key component for many digital circuits like microprocessors or digital signal processors. Its main utilization is to perform logical and arithmetic operations. This has empowered the designers to continuously optimize this circuit and ameliorate its characteristics like robustness, compactness, efficiency, and scalability. Carbon Nanotube Field Effect Transistor (CNFET) stands out as a substitute for CMOS technology for designing circuits in the present-day technology. The objective of this paper is to present an optimized 1-bit full adder design based on CNTFET transistors inspired by new CMOS full adder design [1] with enhanced performance parameters. For a power supply of 0.9V, the count of transistors is decreased to 10 and the power is almost split in two compared to the best existing CNTFET based adder. This design offers significant improvement when compared to existing designs such as C-CMOS, TFA, TGA, HPSC, 18T-FA adder, etc. Comparative data analysis shows that there is 37%, 50%, and 49% amelioration in terms of area, delay, and power delay product respectively compared to both CNTFET and CMOS based adders in existing designs. The circuit was designed in 32nm technology and simulated with HSPICE tools.


Electronics ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 851 ◽  
Author(s):  
Gil-Tomàs ◽  
Gracia-Morán ◽  
Saiz-Adalid ◽  
Gil-Vicente

Due to the increasing defect rates in highly scaled complementary metal–oxide–semiconductor (CMOS) devices, and the emergence of alternative nanotechnology devices, reliability challenges are of growing importance. Understanding and controlling the fault mechanisms associated with new materials and structures for both transistors and interconnection is a key issue in novel nanodevices. The graphene nanoribbon field-effect transistor (GNR FET) has revealed itself as a promising technology to design emerging research logic circuits, because of its outstanding potential speed and power properties. This work presents a study of fault causes, mechanisms, and models at the device level, as well as their impact on logic circuits based on GNR FETs. From a literature review of fault causes and mechanisms, fault propagation was analyzed, and fault models were derived for device and logic circuit levels. This study may be helpful for the prevention of faults in the design process of graphene nanodevices. In addition, it can help in the design and evaluation of defect- and fault-tolerant nanoarchitectures based on graphene circuits. Results are compared with other emerging devices, such as carbon nanotube (CNT) FET and nanowire (NW) FET.


Author(s):  
T. Suguna ◽  
M. Janaki Rani

In VLSI, power optimization is the main criteria for all the portable mobile applications and developments because of its impact on system performance. The performance of an adder has significant impact on overall performance of a digital system. Adiabatic logic (AL), a new emerging research domain for optimizing the power in VLSI circuits with high switching activity is discussed, in this paper, for implementing the adder circuits. Various adiabatic logic styles full adder designs are reviewed and multiplexer based hybrid full adder topology is designed and implemented with ECRL and 2PASCL AL styles. Moreover in this paper, 32 bit adders such as Ripple Carry Adder (RCA), Carry Select Adder (CSLA), Carry Save Adder (CSA), Carry Skip Adder (CSKA) and Brent Kung Adder (BKA) are realised using proposed ECRL and 2PASCL adiabatic full adders. All the adders are implemented and simulated using TANNER EDA tool 22nm technology, parameters like power, area, delay and power delay product (PDP) of all the adders are observed at different operating frequencies, with supply voltage of 0.95 v and load capacitance of 0.5 pF. The observed parameters are compared with the existing adiabatic full adder designs and concluded that the proposed adiabatic full adders have the advantages of less power, delay and transistor count. In conclusion ECRL full adder is 31% faster, has equal PDP and less area than 2PASCL full adder. At 1000MHz ECRL 32 bit carry save adder is having less delay among all the 32 bit adder and 65% less PDP than 2PASCL adder and it is concluded that ECRL 32 bit carry save adder can be selected for implementation of circuits that can be used in portable mobile applications.


Author(s):  
Himanshu Shekhar, Prof. Deepa Gianchandani

In the complex advance microelectronics based system, handling units are managing gadgets of littler size, which are delicate to the transient faults. A framework should be fabricated that will perceive the presence of faults and fuses strategies to will endure these faults without troublesome the typical activity A transient fault happens in a circuit caused by the electromagnetic commotions, astronomical beams, crosstalk and power supply clamor. It is extremely hard to recognize these faults amid disconnected testing. Subsequently a region effective fault tolerant full adder for testing and fixing of transient and changeless faults happened in single and multi-net is proposed. Furthermore, the proposed design can likewise identify and fix perpetual faults. This structure acquires much lower equipment overheads with respect to the conventional equipment design. In this paper, talk about various fault tolerant methodology for CMOS and ICs.


Author(s):  
Bilal N Md ◽  
Bhaskara Rao K ◽  
Mohan Das S

This This paper presents energy efficient GDI based 1-bit full adder cells with low power consumption and lesser delay with full swing modified basic logic gates to have reduced Power Delay Product (PDP). The various full adders are effectively realized by means of full swing OR, AND and XOR gates with the noteworthy enhancement in their performance. The simulations for the designed circuits performed in cadence virtuoso tool with 45-nm CMOS technologies at a supply voltage of 1 Volts. The proposed 1-bit adder cells are compared with various basic adders based on speed, power consumption and energy (PDP). The proposed adder schemes with full swing basic cells achieve significant savings in terms of delay and energy consumption and which are more than 41% and 32% respectively in comparison to conventional “C-CMOS” 1-bit full adder and other existing adders.


2013 ◽  
Vol 7 (3) ◽  
pp. 1155-1165
Author(s):  
Dayadi Lakshmaiah ◽  
Dr. M.V. Subramanyam ◽  
Dr. K.Sathya Prasad

This paper process a novel design for low power 1-bit CMOS full adder using XNOR and MUX, with reduced number of transistors using GDI cell. The circuits were simulated with supply voltage scaling from 1.2V to 0.6V &0.6V to 0.3V. To achieve the desired performance of power delay product, area, capacitance the transistors with low threshold voltage were used at critical paths and high threshold voltage at non critical paths. The results show the efficiency of the proposed technique in terms of power consumption, delay and area.


Author(s):  
Nandhaiahgari Dinesh Kumar ◽  
Rajendra Prasad Somineni ◽  
CH Raja Kumari

<span>CMOS transistors are most widely used for the design of computerized circuits, when scaling down the nanometer technology these devices faces the short channel effects and causes I-V characteristics to depart from the traditional MOSFETs, So the researchers have developed the other transistors technologies like CNTFET and GNRFET. Carbon nanotube field effect transistor is one of the optimistic technologies and it is a three terminal transistor similar to MOSFET. The semiconducting channel between the two terminals called source and drain comprises of the nano tube which is made of carbon. Graphene nano ribbon filed effect transistor is the most optimistic technology here the semiconducting channel is made of graphene. When contrasted with barrel shaped CNTFETs, GNRFETs can be prepared in situ process, transfer-free and silicon compatible, thus have no passage related and alignment problems as faced in CNTFET devices. This paper presents different 1-bit Full Adder Cells (FACs) like TG MUX-based FAC (TGM), MN MUX-based FAC (MNM), proposed TG Modified MUX-based FAC (TGMM) and another proposed MN Modified MUX-based FAC (MNMM) are designed using different technologies like CNTFET and GNRFET at 16nm technology with supply voltage of 0.85v and simulation is done by using Synopsys HSPICE Tool and the proposed designs are best when compared to the TGM and MNM FACs in terms of Static and Dynamic powers Dissipations and Delay.</span>


2022 ◽  
Author(s):  
Eunwoo Baek ◽  
Jaemin Son ◽  
Kyoungah Cho ◽  
Sangsig Kim

Abstract In this paper, we propose a logic-in-memory (LIM) inverter comprising a silicon nanowire (SiNW) n-channel feedback field-effect transistor (n-FBFET) and a SiNW p-channel metal oxide semiconductor field-effect transistor (p-MOSFET). Further, we investigated the hybrid logic and memory operations of the inverter using mixed-mode technology computer-aided design simulations. Our LIM inverter exhibited a high voltage gain of 296.8 (V/V) when transitioning from logic ‘1’ to ‘0’ and 7.9 (V/V) when transitioning from logic ‘0’ to ‘1’, while holding calculated logic at zero input voltage. The energy band diagrams of the n-FBFET structure demonstrated that the holding operation of the inverter was implemented by controlling the positive feedback loop. Moreover, the output logic can remain constant without any supply voltage, resulting in zero static power consumption.


Sign in / Sign up

Export Citation Format

Share Document