scholarly journals Physical properties of honeys produced in the Northeast of Brazil

Author(s):  
Patricia Argemira Costa ◽  
Izabel Cristina Freitas Moraes ◽  
Ana Mônica Q.B. Bittante ◽  
Paulo José do Amaral Sobral ◽  
Catarina A. Gomide ◽  
...  

The aim of this work was to study the rheological, thermal and some other physical-chemical properties of selected honeys produced in the Northeast of Brazil. Two samples were produced by native “Jandaira” bees (Melipona subnitida) and ten other samples by Africanized bees (Apis mellifera). The samples were analyzed for pH, water activity (aW), soluble solids and water content. Viscosity flow curves were obtained using a rheometer (25ºC, 0-100s-1). Thermal analyses were performed on a differential scanning calorimeter, with heating rate of 10ºC/min (-100 to 100ºC). The water content and the pH of the honey samples varied from 17.2 to 27.9% and from 3.2 to 4.2, respectively, and, the aW of the samples varied from 0.57 to 0.74. Two samples were out of specification with respect to water content, according to Brazilian laws. In relation to rheology, all honey samples showed Newtonian behaviour with no thixotropy or dilatancy. The viscosity varied as an exponential function of the water content. The highest viscosity was obtained for the sample with lower values of water content and aW. Thermograms showed a glass transition (Tg) occurring between -52.4 and -42.6ºC, in the samples produced by Apis mellifera and -67.6 and -57.0ºC for the other samples. A linear relationship was obtained between Tg and water content. In conclusion, the honey viscosity depended on the water content of the product. The higher the water value and therefore the greater the aw, the lower viscosity and Tg of the samples.

2013 ◽  
Vol 2 (1) ◽  
Author(s):  
Patricia Argemira Costa ◽  
Izabel Cristina Freitas Moraes ◽  
Ana Mônica Q.B. Bittante ◽  
Paulo José do Amaral Sobral ◽  
Catarina A. Gomide ◽  
...  

The aim of this work was to study the rheological, thermal and some other physical-chemical properties of selected honeys produced in the Northeast of Brazil. Two samples were produced by native “Jandaira” bees (Melipona subnitida) and ten other samples by Africanized bees (Apis mellifera). The samples were analyzed for pH, water activity (aW), soluble solids and water content. Viscosity flow curves were obtained using a rheometer (25ºC, 0-100s-1). Thermal analyses were performed on a differential scanning calorimeter, with heating rate of 10ºC/min (-100 to 100ºC). The water content and the pH of the honey samples varied from 17.2 to 27.9% and from 3.2 to 4.2, respectively, and, the aW of the samples varied from 0.57 to 0.74. Two samples were out of specification with respect to water content, according to Brazilian laws. In relation to rheology, all honey samples showed Newtonian behaviour with no thixotropy or dilatancy. The viscosity varied as an exponential function of the water content. The highest viscosity was obtained for the sample with lower values of water content and aW. Thermograms showed a glass transition (Tg) occurring between -52.4 and -42.6ºC, in the samples produced by Apis mellifera and -67.6 and -57.0ºC for the other samples. A linear relationship was obtained between Tg and water content. In conclusion, the honey viscosity depended on the water content of the product. The higher the water value and therefore the greater the aw, the lower viscosity and Tg of the samples.


2018 ◽  
Vol 11 (1) ◽  
pp. 11
Author(s):  
Ridya Wardani ◽  
Kawiji Kawiji ◽  
Siswanti Siswanti

<p>This research aims to determine the effect of CMC (Carboxyl Methyl Cellulose) concentration on the sensory, physical and chemical properties of beetroot jam (Beta vulgaris L.) cinnamon extract. This research used Completely Randomized Design (RAL) with 1 factor and 4 treatment variation. The results showed that the variation of CMC concentration given on beetroot jam has an effect on the sensory characteristics of color parameters, total dissolved solids, viscosity, water content, water activity and antioxidant activity. The preferred formulation of the panelis is beetroot jam with 1% and 1.5% CMC concentration. The total value of total soluble solids on the beetroot jam with the addition of 1% CMC of 42.54oBrix and CMC 1.5% of 50.73oBrix. The value  viscosity addition of CMC concentration 1% and 1.5% respectively amounted 9774,68 cP and 9858,1 cP. The value of water content with 1% addition of CMC is 46,81% and addition of CMC 1,5% is 51,57%. The activity of water on the beetroot jam with the addition of 1% CMC concentration is 0.88 and CMC 1.5% is 0.92. In testing of antioxidant activity of beetroot jam with addition of CMC1% and CMC 1,5% respectively 52,48% and 55,45%.</p>


Author(s):  
Mariane Beatriz Sordi ◽  
Ariadne Cristiane Cabral da Cruz ◽  
Águedo Aragones ◽  
Mabel Mariela Rodríguez Cordeiro ◽  
Ricardo de Souza Magini

The aim of this study was to synthesize, characterize, and evaluate degradation and biocompatibility of poly(lactic-co-glycolic acid) + hydroxyapatite / β-tricalcium phosphate (PLGA+HA/βTCP) scaffolds incorporating simvastatin (SIM) to verify if this biomaterial might be promising for bone tissue engineering. Samples were obtained by the solvent evaporation technique. Biphasic ceramic particles (70% HA, 30% βTCP) were added to PLGA in a ratio of 1:1. Samples with SIM received 1% (m:m) of this medication. Scaffolds were synthesized in a cylindric-shape and sterilized by ethylene oxide. For degradation analysis, samples were immersed in PBS at 37 °C under constant stirring for 7, 14, 21, and 28 days. Non-degraded samples were taken as reference. Mass variation, scanning electron microscopy, porosity analysis, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetry were performed to evaluate physico-chemical properties. Wettability and cytotoxicity tests were conducted to evaluate the biocompatibility. Microscopic images revealed the presence of macro, meso, and micropores in the polymer structure with HA/βTCP particles homogeneously dispersed. Chemical and thermal analyses presented very similar results for both PLGA+HA/βTCP and PLGA+HA/βTCP+SIM. The incorporation of simvastatin improved the hydrophilicity of scaffolds. Additionally, PLGA+HA/βTCP and PLGA+HA/βTCP+SIM scaffolds were biocompatible for osteoblasts and mesenchymal stem cells. In summary, PLGA+HA/βTCP scaffolds incorporating simvastatin presented adequate structural, chemical, thermal, and biological properties for bone tissue engineering.


Food Biology ◽  
1970 ◽  
pp. 19-23
Author(s):  
Nawal Abdel-Gayoum Abdel-Rahman

The aim of this study is to use of karkede (Hibiscus sabdariffa L.) byproduct as raw material to make ketchup instead of tomato. Ketchup is making of various pulps, but the best type made from tomatoes. Roselle having adequate amounts of macro and micro elements, and it is rich in source of anthocyanine. The ketchup made from pulped of waste of soaked karkede, and homogenized with starch, salt, sugar, ginger (Zingiber officinale), kusbara (Coriandrum sativum) and gum Arabic. Then processed and filled in glass bottles and stored at two different temperatures, ambient and refrigeration. The total solids, total soluble solids, pH, ash, total titratable acidity and vitamin C of ketchup were determined. As well as, total sugars, reducing sugars, colour density, and sodium chloride percentage were evaluated. The sensory quality of developed product was determined immediately and after processing, which included colour, taste, odour, consistency and overall acceptability. The suitability during storage included microbial growth, physico-chemical properties and sensory quality. The karkede ketchup was found free of contaminants throughout storage period at both storage temperatures. Physico-chemical properties were found to be significantly differences at p?0.05 level during storage. There were no differences between karkade ketchup and market tomato ketchup concerning odour, taste, odour, consistency and overall acceptability. These results are encouraging for use of roselle cycle as a raw material to make acceptable karkade ketchup.


2017 ◽  
Vol 4 (1) ◽  
pp. 36-47
Author(s):  
R. Osae G. Essilfie J. O. Anim

The study was conducted to assess the effect of different waxing materials on the quality attributes of tomato fruits. A 2 x8 factorial experiment layout in complete randomized design with 16 treatment combinations and 3 replication was adopted.The materials that were used for the experiment are two (2) varieties of tomatoes (Pectomech and Power Rano) and seven(7) waxing material (shea butter, cassava starch, beeswax, and a combination of shea butter + cassava starch, shea butter + beeswax, cassava starch + beeswax, shea butter + cassava starch + beeswax) and a control. Results from the experiment indicated that all waxing treatments delayed the development of weight loss, firmness, pH, total soluble solids, and total titrable acidity. The results also suggested that edible wax coatings delayed the ripening process and colour development of tomato fruits during the storage period and extended the shelf life. However Beewax treatment and its combinations performed better than the other treatments. It was therefore recommended that locally produced wax such as Beewax, Shea butter, Cassava Starch treatments and their combinations could be a good technology for preserving the quality and extending the shelf life of fresh tomato fruit as well as maintaining the physical and chemical properties.


2020 ◽  
Vol 6 (3) ◽  
pp. 1-33
Author(s):  
Konstantza Tonova

Abstract Room-temperature ionic liquids (ILs) represent molten salts entirely consisting of ions, usually a charge-stabilized organic cation and an inorganic or organic anion. ILs are liquids at ambient temperature but possess characteristics unusual for the common liquid solvents, such as negligible vapor pressure, high thermal stability and most over the ability to mix and match libraries of cations and anions in order to acquire desirable physical and chemical properties [1]. The opportunity to obtain tunable density, viscosity, polarity and miscibility with common molecular liquids gave rise to a variety of applications of the ILs [2] as environmentally benign solvents, extractants or auxiliaries. In particular, numbers of innovations in the methods for recovery and purification of biologically derived compounds involve ILs used solo or partnered with other liquids in biphasic systems [3,4,5]. It should be noted that the ILs are not intrinsically greener than the traditional solvents, given that their production is usually more resource-demanding, but the inherent potential for recycling and reuse, and for prevention of chemical accidents gives the ILs advantages ahead. The present chapter provides a state-of-the-art overview on the basic applications of the ILs in biphasic systems aimed at downstream processing of valuable fermentative products, enzymes and organic acids. Main industrially important enzymes, lipases and carbohydrases, are considered and a description of the IL-assisted aqueous biphasic systems (ABS) and the results obtained in view of enzyme yield and purity is made. ILs serve different functions in the ABS, main phase-segregating constituents (mostly in the IL/salt ABS) or adjuvants to the polymer/salt ABS. Enzyme isolation from the contaminant proteins present in the feedstock can be carried out either in the IL-rich or in the salt-rich phase of the ABS and for the reader’s convenience the two options are described separately. Discussion on the factors and parameters affecting the enzyme partitioning in the ABS with ILs guides the reader through the ways by which the interactions between the IL and the enzyme can be manipulated in favor of the enzyme purification through the choice of the ABS composition (IL, salt, pH) and the role of the water content and the IL-rich phase structure. The second part of the chapter is dedicated to the recovery of fermentative organic acids. Mostly hydrophobic ILs have been engaged in the studies and the biphasic systems thereof are summarized. The systems are evaluated by the extraction efficiency and partition coefficient obtained. Factors and parameters affecting the extraction of organic acids by ILs are highlighted in a way to unravel the extraction mechanism. The choice of IL and pH determines the reactive mechanism and the ion exchange, while the water content and the IL phase structure play roles in physical extraction. Procedures undertaken to enhance the efficiency and to intensify the process of extraction are also looked over. Finally, the experimental holes that need fill up in the future studies are marked. According to the author’s opinion an intense research with hydrophobic ILs is suggested as these ILs have been proved milder to the biological structures (both the microbial producer and the enzyme product), more effective in the organic acid recovery and suitable to perform “in situ” extraction. Extractive fermentation entails validation of ecological and toxicological characteristics of the ILs. The protocols for re-extraction of fermentative products separated by IL-assisted biphasic systems should be clearly settled along with the methods for ILs recycling and reuse. Novel more flexible approaches to process intensification can be implemented in order to adopt the separation by biphasic systems for use in industry.


2013 ◽  
Vol 873 ◽  
pp. 562-566 ◽  
Author(s):  
Juan Liu ◽  
Xia Li ◽  
Qing Jie Guo

Chlorella samples were pyrolysed in a fixed bed reactor with γ-Al2O3 or ZSM-5 molecular sieve catalyst at 600°C. Liquid oil samples was collected from pyrolysis experiments in a condenser and characterized for water content, kinematic viscosity and heating value. In the presence of catalysts , gas yield decreased and liquid yield increased when compared with non-catalytic pyrolysis at the same temperatures. Moreover, pyrolysis oil from catalytic with γ-Al2O3 runs carries lower water content and lower viscosity and higher heating value. Comparison of two catalytic products, the results were showed that γ-Al2O3 has a higher activity than that of ZSM-5 molecular sieve. The acidity distribution in these samples has been measured by t.p.d, of ammonia, the γ-Al2O3 shows a lower acidity. The γ-Al2O3 catalyst shows promise for production of high-quality bio-oil from algae via the catalytic pyrolysis.


Food Research ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 320-326
Author(s):  
Reifrey, A. Lascano ◽  
M.G.L.D. Gan ◽  
A.S.L. Sulabo ◽  
D.M.O. Santiago ◽  
L.B. Ancheta ◽  
...  

The study aimed to develop a non-dairy-based probiotic-supplemented product using an underutilized crop in the Philippines such as the yellow passion fruit (Passiflora edulis f. flavicarpa Deg.). The physico-chemical properties (moisture content, water activity, pH, and total soluble solids), probiotics stability at different storage temperatures (4°C, 25°C, and 37°C), and the sensory characteristics of Lactobacillus plantarum S20-supplemented passion fruit juice powder was evaluated. Passion fruit juice powder and L. plantarum S20 were first prepared using low-temperature spray drying utilizing maltodextrin as a carrier, with yield as 42.97% and 21.17%, respectively. Spray drying of probiotics culture also resulted in 42.68% log survivability. The formulated juice powder had a final moisture content of 1.729±0.38% and water activity of 0.398±0.0051, and with recommended dilution with water, had a final pH and total soluble solids of 3.40±0.10 and 12.00±0.00° Brix, respectively. Results also showed that storage of the formulated juice powder at 4°C yielded the highest probiotic stability, maintaining a viable log count of 4.27 per g, while storage at 37°C showed no microbial growth. Sensory evaluation of probioticsupplemented passion fruit juice against a non-probiotic-supplemented one revealed significant difference in terms of color, sweetness, and sourness, while no significant difference was observed in terms of aroma, mouthfeel, and general acceptability.


2020 ◽  
Vol 82 (6) ◽  
pp. 71-78
Author(s):  
Zita Letviany Sarungallo ◽  
Budi Santoso ◽  
Risma Uli Situngkir ◽  
Mathelda Kurniaty Roreng ◽  
Meike Meilan Lisangan

Refining of crude red fruit oil (CRFO) through the degumming and neutralization steps intended to produce oil free of impurities (non triglycerides) such as phospholipids, proteins, residues and carbohydrates, and also reducing the amount of free fatty acids (FFA). This study aims to determine the effect of red fruit oil purification through degumming and neutralization stages on chemical properties, fatty acid composition, carotenoid content and tocopherol of red fruit oil (RFO). The results showed that degumming of CRFO did not affect the decrease in water content, FFA levels, peroxide numbers, iodine values, carotenoids and tocopherols content; but decrease in levels of phosphorus, β-carotene and α-tocopherol. Neutralization of degummed-RFO (DRFO) did not affect the decrease in water content, iodine value, carotenoid, tocopherol and α-tocopherol; but the FFA levels, peroxide number, phosphorus and β-carotene levels decreased significantly. The fatty acid composition of RFO was dominated by unsaturated fatty acids (± 75%), which increases through degumming and neutralization stages. β-carotene is more sensitive than α-tocopherol during refining process of crude oil, but in general, this process can improve the RFO quality.


2018 ◽  
Vol 63 (4) ◽  
pp. 355-366
Author(s):  
Saadatian Mohammad ◽  
Paiza Abdurahman ◽  
Kanar Salim ◽  
Pershang Younis ◽  
Hewen Abdurahman ◽  
...  

Some physico-chemical properties of ten pomegranate accessions collected from different districts in the Kurdistan region of Iraq were investigated in this paper. Considerable correlations between the characteristics studied were found and valuable pomological traits were observed. Cluster analysis showed the homonyms between some pomegranate accessions. Principle component analysis reported that the component describing the greatest variability also positively correlated with fruit weight, total aril weight, total peel weight, volume of juice, total soluble solids (TSS), fruit length, fruit diameter, pH, aril length, and 100-seed fresh weight, but negatively correlated with titratable acidity (TA). Fruit weight was firmly correlated with total aril weight, total peel weight, volume of juice, TSS, aril length, 100-seed fresh weight, fruit length and fruit diameter. The volume of juice was correlated with TSS, aril length, 100-seed fresh weight, fruit length, fruit diameter and it was observed that with an increase in the fruit size, the volume of juice increased as well. The correlation between total phenolic compounds and antioxidant capacity was not observed. The associations found among physical and chemical traits suggest that consumers should use large fruits with large arils so that they have more juice. Thus, ?Choman?, ?Raniyeh? and ?Halabja? were juicier than other accessions.


Sign in / Sign up

Export Citation Format

Share Document