scholarly journals The Hippo pathway controls myofibril assembly and muscle fiber growth by regulating sarcomeric gene expression

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Aynur Kaya-Çopur ◽  
Fabio Marchiano ◽  
Marco Y Hein ◽  
Daniel Alpern ◽  
Julie Russeil ◽  
...  

Skeletal muscles are composed of gigantic cells called muscle fibers, packed with force-producing myofibrils. During development the size of individual muscle fibers must dramatically enlarge to match with skeletal growth. How muscle growth is coordinated with growth of the contractile apparatus is not understood. Here, we use the large Drosophila flight muscles to mechanistically decipher how muscle fiber growth is controlled. We find that regulated activity of core members of the Hippo pathway is required to support flight muscle growth. Interestingly, we identify Dlg5 and Slmap as regulators of the STRIPAK phosphatase, which negatively regulates Hippo to enable post-mitotic muscle growth. Mechanistically, we show that the Hippo pathway controls timing and levels of sarcomeric gene expression during development and thus regulates the key components that physically mediate muscle growth. Since Dlg5, STRIPAK and the Hippo pathway are conserved a similar mechanism may contribute to muscle or cardiomyocyte growth in humans.

2020 ◽  
Author(s):  
Aynur Kaya-Çopur ◽  
Fabio Marchiano ◽  
Marco Y. Hein ◽  
Daniel Alpern ◽  
Julie Russeil ◽  
...  

AbstractSkeletal muscles are composed of gigantic cells called muscle fibers, packed with force-producing myofibrils. During development the size of individual muscle fibers must dramatically enlarge to match with skeletal growth. How muscle growth is coordinated with growth of the contractile apparatus is not understood. Here, we use the large Drosophila flight muscles to mechanistically decipher how muscle fiber growth is controlled. We find that regulated activity of core members of the Hippo pathway is required to support flight muscle growth. Interestingly, we identify Dlg5 and Slmap as regulators of the STRIPAK phosphatase, which negatively regulates Hippo to enable post-mitotic muscle growth. Mechanistically, we show that the Hippo pathway controls timing and levels of sarcomeric gene expression during development and thus regulates the key components that physically mediate muscle growth. Since Dlg5, STRIPAK and the Hippo pathway are conserved a similar mechanism may contribute to muscle or cardiomyocyte growth in humans.


2019 ◽  
Vol 20 (19) ◽  
pp. 4709 ◽  
Author(s):  
Seong-Hun Kim ◽  
Hua Jin ◽  
Ruo Yu Meng ◽  
Da-Yeah Kim ◽  
Yu Chuan Liu ◽  
...  

The Hippo pathway is often dysregulated in many carcinomas, which results in various stages of tumor progression. Ursolic acid (UA), a natural compound that exists in many herbal plants, is known to obstruct cancer progression and exerts anti-carcinogenic effect on a number of human cancers. In this study, we aimed to examine the biological mechanisms of action of UA through the Hippo pathway in gastric cancer cells. MTT assay showed a decreased viability of gastric cancer cells after treatment with UA. Following treatment with UA, colony numbers and the sizes of gastric cancer cells were significantly diminished and apoptosis was observed in SNU484 and SNU638 cells. The invasion and migration rates of gastric cancer cells were suppressed by UA in a dose-dependent manner. To further determine the gene expression patterns that are related to the effects of UA, a microarray analysis was performed. Gene ontology analysis revealed that several genes, such as the Hippo pathway upstream target gene, ras association domain family (RASSF1), and its downstream target genes (MST1, MST2, and LATS1) were significantly upregulated by UA, while the expression of YAP1 gene, together with oncogenes (FOXM1, KRAS, and BATF), were significantly decreased. Similar to the gene expression profiling results, the protein levels of RASSF1, MST1, MST2, LATS1, and p-YAP were increased, whereas those of CTGF were decreased by UA in gastric cancer cells. The p-YAP expression induced in gastric cancer cells by UA was reversed with RASSF1 silencing. In addition, the protein levels in the Hippo pathway were increased in the UA-treated xenograft tumor tissues as compared with that in the control tumor tissues; thus, UA significantly inhibited the tumorigenesis of gastric cancer in vivo in xenograft animals. Collectively, UA diminishes the proliferation and metastasis of gastric cancer via the regulation of Hippo pathway through Rassf1, which suggests that UA can be used as a potential chemopreventive and therapeutic agent for gastric cancer.


2005 ◽  
Vol 169 (2) ◽  
pp. 257-268 ◽  
Author(s):  
Y'vonne Albert ◽  
Jennifer Whitehead ◽  
Laurie Eldredge ◽  
John Carter ◽  
Xiaoguang Gao ◽  
...  

Vertebrate muscle spindle stretch receptors are important for limb position sensation (proprioception) and stretch reflexes. The structurally complex stretch receptor arises from a single myotube, which is transformed into multiple intrafusal muscle fibers by sensory axon–dependent signal transduction that alters gene expression in the contacted myotubes. The sensory-derived signal transduction pathways that specify the fate of myotubes are very poorly understood. The zinc finger transcription factor, early growth response gene 3 (Egr3), is selectively expressed in sensory axon–contacted myotubes, and it is required for normal intrafusal muscle fiber differentiation and spindle development. Here, we show that overexpression of Egr3 in primary myotubes in vitro leads to the expression of a particular repertoire of genes, some of which we demonstrate are also regulated by Egr3 in developing intrafusal muscle fibers within spindles. Thus, our results identify a network of genes that are regulated by Egr3 and are involved in intrafusal muscle fiber differentiation. Moreover, we show that Egr3 mediates myotube fate specification that is induced by sensory innervation because skeletal myotubes that express Egr3 independent of other sensory axon regulation are transformed into muscle fibers with structural and molecular similarities to intrafusal muscle fibers. Hence, Egr3 is a target gene that is regulated by sensory innervation and that mediates gene expression involved in myotube fate specification and intrafusal muscle fiber morphogenesis.


2020 ◽  
Vol 21 (10) ◽  
pp. 3451 ◽  
Author(s):  
Koichi Fujisawa ◽  
Taro Takami ◽  
Nanami Sasai ◽  
Toshihiko Matsumoto ◽  
Naoki Yamamoto ◽  
...  

Hepatic stellate cells (HSCs) play a vital role in liver fibrosis, and a greater understanding of their regulation is required. Recent studies have focused on relationships between extracellular matrix (ECM) stiffness and gene expression or cellular metabolism, but none have provided a detailed metabolic analysis of HSC changes in spheroid cultures. Accordingly, in the present study, we created an HSC spheroid culture and analyzed changes in gene expression and metabolism. Expression of α-smooth muscle actin (α-SMA) decreased in the spheroids, suppressing proliferation. Gene expression analysis revealed the cell cycle, sirtuin signaling, mitochondrial dysfunction, and the Hippo pathway to be canonical pathways, believed to result from decreased proliferative ability or mitochondrial suppression. In the Hippo pathway, nuclear translocation of the yes-associated protein (YAP) was decreased in the spheroid, which was associated with the stiffness of the ECM. Metabolome analysis showed glucose metabolism changes in the spheroid, including glutathione pathway upregulation and increased lipid synthesis. Addition of the glycolytic product phosphoenolpyruvate (PEP) led to increased spheroid size, with increased expression of proteins such as α-SMA and S6 ribosomal protein (RPS6) phosphorylation, which was attributed to decreased suppression of translation. The results of our study contribute to the understanding of metabolic changes in HSCs and the progression of hepatic fibrosis.


2019 ◽  
Vol 133 (13) ◽  
pp. 1387-1399 ◽  
Author(s):  
Fei Xu ◽  
Jingcheng Yang ◽  
Jun Shang ◽  
Feng Lan ◽  
Miaomiao Li ◽  
...  

Abstract Recent evidence has shown that cardiomyocytes (CMs) can proliferate at a low level after myocardial infarction (MI), but it is insufficient to reestablish heart function. Several microRNAs (miRNAs) have been proven to sufficiently induce rodent CM proliferation. However, whether miRNAs identified in rodents can promote human CM proliferation is unknown due to the poorly conserved functions of miRNAs among species. In the present study, we demonstrate that i) expression of microRNA-302d (miR-302d) decreased significantly during CM differentiation from human pluripotent stem cells (hPSCs) from day 4 to day 18; ii) miR-302d efficiently promoted proliferation of hPSC-derived CMs; iii) miR-302d promoted CM proliferation by targeting LATS2 in the Hippo pathway; and iv) RNA-sequencing analysis revealed that overexpression of miR-302d induced changes in gene expression, which mainly converged on the cell cycle. Our study provides further evidence for the therapeutic potential of miR-302d.


1958 ◽  
Vol 4 (3) ◽  
pp. 251-256 ◽  
Author(s):  
George A. Edwards ◽  
Helmut Ruska ◽  
Étienne de Harven

The tymbal muscle fiber in the cicada closely resembles the indirect flight muscle fiber in its structural detail. We agree with other authors that the tymbal muscle is a modified indirect flight muscle. The peripheral nerve branches to the tymbal and flight muscle fibers are similar to those in the wasp leg. The axon is loosely mantled by irregular turns of the mesaxon, enclosing cytoplasm. The nerve is therefore a tunicated nerve. The neuromuscular junction in the high frequency muscle fibers shows direct apposition of plasma membranes of axon and muscle fiber, large numbers of mitochondria and synaptic vesicles in the axon, and concentrations of mitochondria, aposynaptic granules, and endoplasmic reticulum in the postsynaptic area of the muscle fiber. Of special interest is the multitude of intracellular, opposing membranes in the postsynaptic area. They form laminated stacks and whorls, vesicles, cysternae, and tubules. They occasionally show continuity with the plasma membrane, the outer nuclear envelope, and the circumfibrillar endoplasmic reticulum. The membrane system in this area is designated "rete synapticum." It is believed to add to the electrical capacity of the neuromuscular junction, to serve in transmission of potentials, and possibly is the site of the oscillating mechanism in high-frequency muscle fibers.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sheyda Khalilian ◽  
Zohreh Hojati ◽  
Fariba Dehghanian ◽  
Vahid Shaygannejad ◽  
Seyedeh Zahra Hosseini Imani ◽  
...  

AbstractAlterations in the regulatory mechanisms that control the process of myelination in the nervous system, may lead to the impaired myelination in the Multiple sclerosis. The Hippo pathway is an important mediator of myelination in the nervous system and might contribute to the pathophysiology of MS. This study examined via qPCR the RNA expression of YAP1, TAZ, and CRB3 as the key effectors of the Hippo pathway and also, VDR in the peripheral blood of 35 sporadic, 37 familial MS patients; and also 34 healthy first-degree relatives of the familial MS patients (HFR) and 40 healthy individuals without a family history of the disease (control). The results showed the increased expression of VDR in the sporadic group, as compared to other groups. There was also an increased expression of TAZ in the familial and HFR groups, as compared to the control group. The familial and sporadic patients displayed a significantly lower level of expression of YAP1 in comparison to the HFR group. The increased expression level in the sporadic patients and control group, as compared to the HFR group, was seen in CRB3. We also assessed different clinical parameters and MRI characteristics of the patients. Overall, these findings suggest that Hippo pathway effectors and also VDR gene may play a potential role in the pathophysiology of the sporadic and familial forms of MS. Confirmation of different gene expression patterns in sporadic and familial MS groups may have obvious implications for the personalization of therapies in the disease.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2296-2296
Author(s):  
Fabiana Perna ◽  
Ly P. Vu ◽  
Maria Themeli ◽  
Ruben Hoya-Arias ◽  
Fan Liu ◽  
...  

Abstract Abstract 2296 The Hippo signaling pathway, first discovered in Drosophila, is emerging as an important regulator of stem cell behavior. Upon still-unclear upstream stimuli, the hippo pathway kinase cascade phosphorylates and inhibits the function of YAP, a transcription coactivator, by inducing its cytoplasmic retention. While recent evidences indicate that inhibition of YAP affects cell fate decisions, and proliferation, in many tissues, little is known about the relevance of this pathway in hematopoiesis. However, the interaction of YAP with Smad1, identified in flies and human cells (Alarcon C. et al. Cell 2009), prevents smurf-mediated Smad1 degradation, potentially enhancing BMP signaling. Our ongoing studies have indentified crosstalk between the BMP4 and the Hippo pathways in hematopoietic cells, and in induced-pluripotent stem (iPS) cells that we differentiated towards the erythroid lineage. This crosstalk involves the chromatin-binding, Polycomb protein L3MBTL1, which clearly regulate the effects of BMP on the erythroid differentiation of hematopoietic stem/progenitor cells and on fetal globin gene expression. We find that the Lats2 kinase, a core component of the Hippo pathway, physically interacts with L3MBTL1 and that treatment with BMP4 or Erythropoietin decreases the expression of both proteins in various hematopoietic cells, including primary human cord blood-derived CD34+ cells. By altering L3MBTL1 levels in K562 cells, we were able to show that the L3MBTL1-Lats2 interaction enhances Lats-mediated phosphorylation and the cytoplasmic retention of YAP. Furthermore, L3MBTL1-depleted iPS cells have an enhanced smad-mediated transcriptional response; by analyzing the gene expression profile of these cells, we found increased expression of several BMP target genes (such as HHEX and ID genes), suggesting that L3MBTL1 negatively titrates the BMP4 signaling pathway at least in part by affecting YAP phosphorylation and localization. Gene Set Enrichment Analysis confirmed enrichment of many smad-related genes, and yet, these cells presented enhanced smad1/5/8 phosphorylation by WB analysis, indicating that BMP4 signaling is triggered by L3MBTL1 depletion. We also found that hematopoietic differentiation of L3MBTL1-KD iPS cells generates high-fetal globin gene expressing erythroid progeny, suggesting a role for the BMP4 signaling pathway and the targeting of L3MBTL1 in the treatment of hemoglobinopathies. To further evaluate the effect of BMP4 signaling on hematopoietic cells that lack L3MBTL1, we analyzed the stress erythroid response of L3MBTL1 KO mice: while no difference was observed at baseline in the null mice compared to wt littermates, the L3mbtl1 null mice had a more severe anemia, with increased leukocytosis, and thrombocytosis post-hydrazine (PHZ) or Epo. We found a significant increase in the colony-forming ability of the l3mbtl1 null spleen and bone marrow cells, compared to controls, as well as increased spleen size and an expansion of the spleen erythroid compartment. Thus, l3mbtl1 null hematopoietic stem cells are more sensitive to the PHZ-mediated cytokine storm, which includes BMP4. Interestingly, the L3mbtl1 null BM and spleen cells showed diminished expression of Lats2 and phospho-YAP, consistent with our in vitro findings. In conclusion, these investigations have shown that L3MBTL1 not only negatively titrates the BMP4 signaling pathway, but also provides a nodal point for crosstalk between the BMP4 and Hippo signaling pathways in erythropoiesis. Thus, these data provide insights into possible novel treatments for genetic red cell disorders (such as β-thalassemia) and for acquired bone marrow failure syndromes such as Epo-resistant anemia. Disclosures: Levine: Agios Pharmaceuticals: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document