scholarly journals A Study on Phytochemical and Anticancer Activities of Epiphytic Orchid Aerides odorata Lindl.

Author(s):  
Jhansi Katta ◽  
Venkatesh Rampilla ◽  
S. M. Khasim

Aim: The present study was carried out to evaluate the phytochemical composition and anticancer activities of leaf extract of Aerides odorata Lour., a widely distributed epiphytic herb found in the Eastern Ghats of Vizianagram district. Methodology: The solvents like n-hexane, ethyl acetate and methanol were used to extract dried leaf material of A. odorata. These extracts were analysed for phytochemical constituents by GC-MS analysis and in vitro anticancer activity was done against two cancer cell lines (MCF-7 and HeLa cell line) by using MTT assay. Results: Preliminary phytochemical analysis revealed the presence of alkaloids, coumarins, flavonoids, glycosides, phenols, and terpenoids. GC-MS analysis determines presence of 15 compounds in ethyl acetate and 14 compounds in methanol extracts respectively. Among                    two extracts a total 13 compounds have anticancer activity. Both the solvent extracts exhibit significant cancer cell growth inhibition with IC50 value ranging between 26.211 µg/mL to 59.061 µg/mL. Conclusion: Methanol about the best solvent and its activity. Our result showed A. odorata is a promising source of anticancer drugs.

2018 ◽  
Vol 40 (6) ◽  
pp. 791-804
Author(s):  
Praveen Pandey ◽  
Deepika Singh ◽  
Mohammad Hasanain ◽  
Raghib Ashraf ◽  
Mayank Maheshwari ◽  
...  

Abstract Sphaeranthus indicus Linn. is commonly used in Indian traditional medicine for management of multiple pathological conditions. However, there are limited studies on anticancer activity of this plant and its underlying molecular mechanisms. Here, we isolated an active constituent, 7-hydroxyfrullanolide (7-HF), from the flowers of this plant, which showed promising chemotherapeutic potential. The compound was more effective in inhibiting in vitro proliferation of colon cancers cells through G2/M phase arrest than other cancer cell lines that were used in this study. Consistent with in vitro data, 7-HF caused substantial regression of tumour volume in a syngeneic mouse model of colon cancer. The molecule triggered extrinsic apoptotic pathway, which was evident as upregulation of DR4 and DR5 expression as well as induction of their downstream effector molecules (FADD, Caspase-8). Concurrent activation of intrinsic pathway was demonstrated with loss of ΔΨm to release pro-apoptotic cytochrome c from mitochondria and activation of downstream caspase cascades (Caspase -9, -3). Loss of p53 resulted in decreased sensitivity of cells towards pro-apoptotic effect of 7-HF with increased number of viable cells indicating p53-dependent arrest of cancer cell growth. This notion was further supported with 7-HF-mediated elevation of endogenous p53 level, decreased expression of MDM2 and transcriptional upregulation of p53 target genes in apoptotic pathway. However, 7-HF was equally effective in preventing progression of HCT116 p53+/+ and p53−/− cell derived xenografts in nude mice, which suggests that differences in p53 status may not influence its in vivo efficacy. Taken together, our results support 7-HF as a potential chemotherapeutic agent and provided a new mechanistic insight into its anticancer activity.


Author(s):  
S. ANNAI THERASA ◽  
G. SOBIYA ◽  
S. MABEL PARIMALA

Objective: Andrographis paniculata (Family: Acanthaceae) is a well-known medicinal plant used in the Indian traditional system of medicine for the treatment of many chronic diseases. The present study was aimed to quantify secondary metabolites, determine antioxidant, and anticancer activity of ethanol extract of A. paniculata leaves. Methods: Leaf sample was macerated with ethanol solvent. Alkaloids, terpenoids, saponins, phenols, and flavonoids were quantified with standard calibrations. The antioxidant potential was tested using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and ferric reducing antioxidant power (FRAP) assays. In vitro anticancer activity was evaluated using human epithelial type 2 (HEp-2) cell line. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to estimate the cytotoxicity of the extracts. Apoptotic and necrotic effects were characterized by DNA fragmentation assay and fluorescence microscopy using the dual acridine orange/ethidium bromide (AO/EB) staining method. Results: The phytochemical analysis reveals the presence of alkaloids, saponins, phenols, flavonoids, terpenoids, and steroids. Alkaloids, terpenoids, saponins, phenol, and flavonoid content were recorded as follows: 9.84%, 8.42%, 13.94%, 44.37 mg gallic acid equivalent/100 g, and 904 mg quercetin equivalent/100 g, respectively. The antioxidant activity from DPPH, ABTS, and FRAP assays showed dose-dependent inhibition of free radicals. In cell viability tests, cell death with increasing extract concentration was observed. DNA fragmentation and AO/EB stain confirmed apoptosis and necrosis in extract-treated cells. Conclusion: The results indicate that A. paniculata is a promising source for the development of antioxidant and anticancer drugs.


2020 ◽  
Vol 27 (6) ◽  
pp. 983-996 ◽  
Author(s):  
Md. Asaduzzaman Khan ◽  
Mousumi Tania

Background: Cordycepin is a nucleotide analogue from Cordyceps mushrooms, which occupies a notable place in traditional medicine. Objective: In this review article, we have discussed the recent findings on the molecular aspects of cordycepin interactions with its recognized cellular targets, and possible mechanisms of its anticancer activity. Methods: We have explored databases like pubmed, google scholar, scopus and web of science for the update information on cordycepin and mechanisms of its anticancer activity, and reviewed in this study. Results: Cordycepin has been widely recognized for its therapeutic potential against many types of cancers by various mechanisms. More specifically, cordycepin can induce apoptosis, resist cell cycle and cause DNA damage in cancer cells, and thus kill or control cancer cell growth. Also cordycepin can induce autophagy and modulate immune system. Furthermore, cordycepin also inhibits tumor metastasis. Although many success stories of cordycepin in anticancer research in vitro and in animal model, and there is no successful clinical trial yet. Conclusion: Ongoing research studies have reported highly potential anticancer activities of cordycepin with numerous molecular mechanisms. The in vitro and in vivo success of cordycepin in anticancer research might influence the clinical trials of cordycepin, and this molecule might be used for development of future cancer drug.


2019 ◽  
Vol 16 (8) ◽  
pp. 619-626
Author(s):  
Arunkumar Thiriveedhi ◽  
Ratnakaram Venkata Nadh ◽  
Navuluri Srinivasu ◽  
Narayana Murthy Ganta

Nowadays, hybrid drugs have gained a significant role in the treatment of different health problems. Most of the hybrid molecules with different heterocyclic moieties were proved to be potent anti-tumor agents in cancer chemotherapy. Hence, the present study is aimed at the evaluation of in vitro anticancer activity of novel hybrid molecules (pyrazolyl benzoxazole conjugates) and to investigate their anticancer activity by molecular docking studies. Designed, synthesized and characterized the novel pyrazolyl benzoxazole conjugates. Anticancer activity of these compounds was determined by SRB assay. Then molecular docking studies were carried out against proto-oncogene tyrosine-protein kinase (ATP-Src, PDB: 2BDF), a putative target for cancer. All the synthesized compound derivatives were evaluated against MCF-7, KB, Hop62 and A549 cancer cell lines. Compounds 9b and 9c exhibited excellent anticancer activities with GI50 values of <0.1 µM against MCF-7 and A549 cell lines. Compound 9e exhibited good antitumor activity on MCF-7 and A-549 with GI50 values of 0.12 µM and 0.19 µM respectively. Compound 9g showed better anticancer activity on A-549 cancer cell line with GI50 of 0.34 µM. The two-hybrid molecules 9b and 9c are found to be comparably potent with the standard drug doxorubicin and may act as drug lead compounds in medicinal chemistry aspect. The present docking investigation proved that having benzoxazole of compound 9c at the position of benzofuran of reference compound (N-acetyl pyrazoline derivative) might be valid for contributing to anti-cancer activity.


2018 ◽  
Vol 399 (4) ◽  
pp. 321-335 ◽  
Author(s):  
Stephen Safe ◽  
Vijayalekshmi Nair ◽  
Keshav Karki

AbstractMetformin is a widely used antidiabetic drug, and there is evidence among diabetic patients that metformin is a chemopreventive agent against multiple cancers. There is also evidence in human studies that metformin is a cancer chemotherapeutic agent, and several clinical trials that use metformin alone or in combination with other drugs are ongoing.In vivoandin vitrocancer cell culture studies demonstrate that metformin induces both AMPK-dependent and AMPK-independent genes/pathways that result in inhibition of cancer cell growth and migration and induction of apoptosis. The effects of metformin in cancer cells resemble the patterns observed after treatment with drugs that downregulate specificity protein 1 (Sp1), Sp3 and Sp4 or by knockdown of Sp1, Sp3 and Sp4 by RNA interference. Studies in pancreatic cancer cells clearly demonstrate that metformin decreases expression of Sp1, Sp3, Sp4 and pro-oncogenic Sp-regulated genes, demonstrating that one of the underlying mechanisms of action of metformin as an anticancer agent involves targeting of Sp transcription factors. These observations are consistent with metformin-mediated effects on genes/pathways in many other tumor types.


2015 ◽  
Vol 10 (2) ◽  
pp. 303 ◽  
Author(s):  
Narendranath Alluri ◽  
Mala Majumdar

<p>The aim of the present study was to investigate the anticancer activity of <em>Drimia nagarjunae</em> (Liliaceae) extracts against Colo205 human colon cancer cell lines by SRB assay for the first time. The bulbs and leaves of the plant were sequentially extracted using solvents with increasing polarities (hexane&gt; chloroform&gt;ethyl acetate&gt;methanol&gt;water). Ethyl acetate and chloroform bulb extracts showed potent anticancer activity compared to standard, adriamycin. Both the extracts exhibited total growth inhibition of cell at 20.1 µg/mL and 32.1 µg/mL whereas adriamycin shown 33.1 µg/mL and 50% lethal concentration was found to be 61.5 µg/mL and &gt;80 µg/mL respectively. The active extracts were subjected to GC-MS analysis for identification of phytocompounds and it showed seven and ten major compounds respectively. Therefore, the present study demonstrated that <em>D. nagarjunae</em> can be a promising candidate as an anticancer agent.</p><p> </p>


2020 ◽  
Vol 63 (1) ◽  
Author(s):  
Soon Young Shin ◽  
Jihyun Park ◽  
Yearam Jung ◽  
Young Han Lee ◽  
Dongsoo Koh ◽  
...  

AbstractWe designed 21 ethyl 3,5-diphenyl-2-cyclohexenone-6-carboxylate derivatives to identify compounds exhibiting anticancer activity. To measure the inhibitory effects of the compounds on cancer cell growth, a long-term survival clonogenic assay was performed. Since compounds containing a cyclohexenone moiety inhibit the enzyme acetylcholinesterase, an in vitro acetylcholinesterase assay was performed for all 21 cyclohexenone derivatives. To examine the effect of the derivative that exhibited the best cancer cell growth inhibition on the induction of apoptosis by demonstrating the activation of caspases and apoptosis regulatory proteins, immunoblotting and immunofluorescence microscopic analyses were performed. The binding mode between the cyclohexenone derivatives and acetylcholinesterase was elucidated at the molecular level using in silico docking. Druggability was evaluated based on ligand efficiency.


Author(s):  
Shuchi Dave Mehta ◽  
Sarvesh Paliwal

 Objective: The objective of the present study is to evaluate in vitro anticancer property and phytochemical analysis using liquid chromatography and mass spectroscopy (LCMS) method of hydroalcoholic extract of seeds of Annona squamosa (AS) Linn. Seeds of AS Linn. are traditional medicine treating various diseases and have shown anticancer activity. Due to lack of survival benefit, cancer is a deadly global disease.Method: The anticancer activity was evaluated using the sulforhodamine B assay method on five cancer cell lines: Breast cancer cell line, cervix cancer cell line (SiHa), colon cancer cell line (HT)-29, liver cancer cell line, and ovary cancer cell line (Ovcar). The phytochemical analysis was performed using LCMS method.Result: The phytochemical characterization was done using LCMS method which showed 15 different molecular weight compounds. The extract showed an average in vitro anticancer activity at a concentration of 100 μg/ml against all cancer cell lines. The best activity was observed against Ovcar-5 cell line (69.72) and was also significant against HT and SiHa cell lines.Conclusion: The phytochemical analysis showed the wide range of phenols and flavonoid which are showing potent anticancer activity of AS seeds.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5447
Author(s):  
Ahmed Gaber ◽  
Walaa F. Alsanie ◽  
Deo Nandan Kumar ◽  
Moamen S. Refat ◽  
Essa M. Saied

Cancer is one of the leading causes of death worldwide. Although several potential therapeutic agents have been developed to efficiently treat cancer, some side effects can occur simultaneously. Papaverine, a non-narcotic opium alkaloid, is a potential anticancer drug that showed selective antitumor activity in various tumor cells. Recent studies have demonstrated that metal complexes improve the biological activity of the parent bioactive ligands. Based on those facts, herein we describe the synthesis of novel papaverine–vanadium(III), ruthenium(III) and gold(III) metal complexes aiming at enhancing the biological activity of papaverine drug. The structures of the synthesized complexes were characterized by various spectroscopic methods (IR, UV–Vis, NMR, TGA, XRD, SEM). The anticancer activity of synthesized metal complexes was evaluated in vitro against two types of cancer cell lines: human breast cancer MCF-7 cells and hepatocellular carcinoma HepG-2 cells. The results revealed that papaverine-Au(III) complex, among the synthesized complexes, possess potential antimicrobial and anticancer activities. Interestingly, the anticancer activity of papaverine–Au(III) complex against the examined cancer cell lines was higher than that of the papaverine alone, which indicates that Au-metal complexation improved the anticancer activity of the parent drug. Additionally, the Au complex showed anticancer activity against the breast cancer MCF-7 cells better than that of cisplatin. The biocompatibility experiments showed that Au complex is less toxic than the papaverine drug alone with IC50 ≈ 111 µg/mL. These results indicate that papaverine–Au(III) complex is a promising anticancer complex-drug which would make it a suitable candidate for further in vivo investigations.


2020 ◽  
Vol 10 (11) ◽  
pp. 3792
Author(s):  
Jagan Mohana Rao Saketi ◽  
S. N. Murthy Boddapati ◽  
Raghuram M. ◽  
Syed Farooq Adil ◽  
Mohammed Rafi Shaik ◽  
...  

A series of 3-aryl indazoles and 1-methyl-3-aryl indazole derivatives are prepared with exceptional yields by coupling with several arylboronic acids and methylation by two dissimilar approaches. The as-prepared indazole derivatives (3a–3j) and their N-methyl derivatives (5a–5j) are evaluated for in vitro anticancer activity against two cancer cell lines, HCT-116 and MDA-MB-231. The results reveal that the indazole derivatives tested display mild to moderate anticancer activities against the cell lines tested.


Sign in / Sign up

Export Citation Format

Share Document