scholarly journals Using Zeolite and Vermicompost Amendments to Improve Water Productivity of Wheat Irrigated by Low-quality Water in the Northern Nile Delta

Author(s):  
T. H. H. Khalifa ◽  
M. S. A. Ramadan ◽  
Mona S. M. Eid

Aims: In the long run, reusing low-quality water in Egypt's agricultural sector directly or after mixing with fresh water to compensate for water supply constraints can be hazardous to plants and soil. As a result, some appropriate management must be considered. For this reason, a field experiment was implemented in winter seasons 2018/2019 and 2019/2020 at Sakha Agric. Res. Station Farm, Kafr El-Sheikh Gov., Egypt. This study aims to assess the impacts of zeolite and vermicompost as well their combinations on alleviation of low-quality water impacts on physicochemical properties of clayey soil and wheat productivity. Study Design:  complete randomized block design with three replicates. Results: The application of 2.40 Mg Z ha-1 was found to be the most effective on soil properties and plant growth. This treatment reduced soil EC, Na+, Ca2+, Mg2+, Cl-, SO42-, and ESP values the most (52.90 percent, 83.21 percent, 30.43 percent, 6.04 percent, 91.82 percent, 19.83 percent, and 70.73 percent, respectively), while increasing the K+ value by 32.47 percent. It also achieved the highest increases in plant height, 1000-grain weight, grain, and straw yields (35.92%, 9.60%, 42.77%, and 25.61%, respectively) when compared to untreated soil. With 2.40 Mg VC ha-1, the greatest changes in bulk density, total porosity, and CEC (-9.23, 9.30, and 10.54 percent, respectively) were obtained. The applications of 1.80 Mg Z with 0.6 Mg VC ha-1 and 0.6 Mg Z ha-1 with 1.80 Mg VC ha-1, on the other hand, resulted in the greatest increases in soil moisture content, drainable pores (DP), and water holding pores (WHP). Furthermore, 0.6 Mg Z combined with 1.80 Mg VC ha-1 significantly increased the available N, P, and K in the soil. The addition of 2.4 tons Z/ha increased the WP and resulted in a high economically appealing wheat. Conclusion: It could be concluded that the application of Z and VC is a new strategy for alleviating abiotic stress and improving wheat growth. Z application was more effective than VC on improving soil physicochemical properties and improving the water productivity and achieve high economical attractiveness wheat irrigated by low-quality water.

2020 ◽  
pp. 133-136
Author(s):  
Chime E.U ◽  
Nweke I.A ◽  
Ibeh C.U

Effects of different mulching materials on some growth parameters of maize and its influence on soil physicochemical properties were studied under Igbariamagro-ecology, during the rainy season of May to August 2019. The four types of mulches were laid out in a randomized complete Block design (RCBD), with four treatments and four replications. The four mulching treatments are Black polythene, while polythene, elephant grass, and no mulch, 5t/ha of cow dung manure was added to 18 experimental plots as Blank treatments. The growth, agronomic parameters, and soil physicochemical properties were monitored. Results indicated that elephant grass mulch significantly (P<0.5) increased the number of leaves, plant height, and stem girth when compared with other treatments. The treatments generally increased total porosity compared with the control. Bulk density and dispersion ratio significantly decreased in all treatments. There was a significant increase in aeration porosity. Field capacity and plant available water were significantly increased (p = 0.05). Buffer capacity, cation exchange capacity, and electrical conductivity were significantly increased with the application of treatments (p = 0.05). Particularly striking was the effect of Elephant grass mulch treatment on soil electrical conductivity which induced a 78.4±4.1 increase compared with the control 22.1±1.0. There was no significant increase in soluble cation. Therefore, elephant grass mulch could be applied alternatively in inorganic mulch and inorganic fertilizer for improved maize production.


Agriculture ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 448
Author(s):  
Leontina Lipan ◽  
Aarón A. Carbonell-Pedro ◽  
Belén Cárceles Rodríguez ◽  
Víctor Hugo Durán-Zuazo ◽  
Dionisio Franco Tarifa ◽  
...  

Mango is one of the most cultivated tropical fruits worldwide and one of few drought-tolerant plants. Thus, in this study the effect of a sustained deficit irrigation (SDI) strategy on mango yield and quality was assessed with the aim of reducing irrigation water in mango crop. A randomized block design with four treatments was developed: (i) full irrigation (FI), assuring the crop’s water needs, and three levels of SDI receiving 75%, 50%, and 33% of irrigation water (SDI75, SDI50, and SDI33). Yield, morphology, color, titratable acidity (TA), total soluble solids (TSS), organic acids (OA), sugars, minerals, fiber, antioxidant activity (AA), and total phenolic content (TPC) were analyzed. The yield was reduced in SDI conditions (8%, 11%, and 20% for SDI75, SDI50, and SDI33, respectively), but the irrigation water productivity was higher in all SDI regimes. SDI significantly reduced the mango size, with SDI33 generating the smallest mangoes. Peel color significantly changed after 13 days of ripening, with SDI75 being the least ripe. The TA, AA, and citric acid were higher in SDI75, while the TPC and fiber increased in all SDI levels. Consequently, SDI reduced the mango size but increased the functionality of samples, without a severe detrimental effect on the yield.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1532 ◽  
Author(s):  
Abdullah Momvandi ◽  
Maryam Omidi Najafabadi ◽  
Jamal Hosseini ◽  
Farhad Lashgarara

Climate change and water scarcity are the most important challenges of the agricultural sector, and pressurized irrigation systems (PISs) are one of the most significant ways to improve agricultural water productivity. The main purpose of this research was to identify the factors affecting the use of PISs by farmers. The statistical research population was a total of 2396 Iranian model farmers. The Cochran formula was used to determine the number of statistical samples. Accordingly, this comprised 331 people. The methodology of the study was mixed method research. The structural equation modeling technique, Mann–Whitney U, and Kruskal–Wallis tests were used to test the hypotheses. The results showed that the personal characteristics, tendency, attitude, self-efficacy, subjective norms, governmental support, environmental tensions, and technological features were the most important factors which influenced the farmers. It was found that all of these variables had a positive and significant relationship with the using of PISs by farmers, and they were able to predict 52% of the behavioral changes (R2) of the farmers. Among these variables, the attitude, with a path coefficient (β) of 0.48, had the highest impact on the using of PISs by the farmers.


2019 ◽  
Vol 11 (4) ◽  
pp. 549
Author(s):  
Francisco de Assis Guedes Júnior ◽  
Deonir Secco ◽  
Luiz Antônio Zanão Júnior ◽  
Luciene Kazue Tokura ◽  
Marcos Felipe Leal Martins

The response to agricultural gypsum, as a conditioner of the root environment in depth, has been observed for most annual crops. These responses are attributed to the better distribution of roots of the crops in depth in the soil by the reduction of chemical impediments, caused by the exchangeable aluminum and calcium deficiency in these layers, which allows to the plants the use of greater volume of water when they occur summer. In this way, the objective of this study was to evaluate the effects of gypsum doses on physical-hydric attributes, root growth and soybean productivity. The experiment was conducted at the Agronomic Institute of Paran&aacute; (IAPAR) in Santa Tereza do Oeste-PR. The soil was classified as Typic Haplortox. Five doses of agricultural gypsum were evaluated: 0; 3; 6; 9 and 12 t ha-1, in outline randomized block design with six repetitions. Soil density, total porosity, macroporosity, microporosity and saturated hydraulic conductivity were evaluated at layers of 0.0-0.1; 0.1-0.2 and 0.2-0.3 m. Soybean productivity and root growth were also evaluated. Data were submitted to regression analysis. The physical attributes soil density, macroporosity and saturated hydraulic conductivity did not differ significantly with the application of the gypsum doses in the 0.0-0.1 and 0.2-0.3 m layers. However, in the 0.1-0.2 m layer, due to pressures imposed by the machines and agricultural implements deforming the soil, there were significant differences in the physical attributes of the density, macroporosity and saturated hydraulic conductivity. There was no significant difference in grain productivity and root growth of soybean.


Author(s):  
Rama T. Rashad ◽  
Rashad A. Hussien

The solubility and availability of Si from the feldspar, silica, and zeolite as Si-bearing minerals were studied in a sandy soil. Silicon uptake by the soybean (<em>Glycine max L.</em>)<em> </em>plant was discussed. The minerals used were applied before planting in two separate rates; rate 1 ≈ 595.2 and rate 2 ≈ 1190.5 kg ha<strong><sup>-1</sup></strong> accompanied by a ≈ 4.8 kg ha<strong><sup>-1</sup></strong> constant rate of the K-humate sprayed as a solution on soil after planting in a complete randomized block design. The dissolved Si from the different minerals at rate 2 followed an opposite direction to their SiO<sub>2</sub> percentage that may be due to the structural differences: silica (1.46 mg kg<strong><sup>-1</sup></strong> - SiO<sub>2 </sub>=98.4%) &lt; zeolite (1.71 mg kg<strong><sup>-1</sup></strong> - SiO<sub>2 </sub>=75.9%) &lt; feldspar (2.09 mg kg<strong><sup>-1</sup></strong> - SiO<sub>2 </sub>= 71.9%). The individual mineral treatments at rate 2 have almost decreased the available NPK estimated after soybean harvesting. The K-humate has enhanced the effect of silica at rate 2 for the available N and P. The soybean seed yield (kg ha<strong><sup>-1</sup></strong>) increased significantly by 117.9% for the S1 + H, 109.2% for K-humate and 57.5% for the Z2 + H. The seeds’ Si (mg kg<strong><sup>-1</sup></strong>) increased significantly from 3.6% to 102.9% affected by the silica treatments.


2018 ◽  
Vol 10 (9) ◽  
pp. 3273 ◽  
Author(s):  
Shokoofeh Khorami ◽  
Seyed Kazemeini ◽  
Sadegh Afzalinia ◽  
Mahesh Gathala

Natural resources are the most limiting factors for sustainable agriculture in Iran. Traditional practices are intensive tillage that leads to a negative impact on crop productivity and soil properties. Conservation agriculture including tillage reductions, better agronomy, and improved varieties, showed encouraging results. The goal of this study was to test combined effect of tillage practices and wheat (Triticum aestivum L.) genotypes on soil properties as well as crop and water productivity. The experiment was conducted at Zarghan, Fars, Iran during 2014–2016. Experimental treatments were three-tillage practices—conventional tillage (CT), reduced tillage (RT), and no tillage (NT)—and four wheat genotypes were randomized in the main and subplots, respectively using split-plot randomized complete block design with three replications. Results showed NT had higher soil bulk density at surface soil, thereby lower cumulative water infiltration. The lowest soil organic carbon and total nitrogen were obtained under CT that led to the highest C:N ratio. Reduced tillage produced higher wheat yield and maize (Zea mays L.) biomass. Maximum irrigation water was applied under CT, which leads lower water productivity. The findings are based on short-term results, but it is important to evaluate medium- and long-term effects on soil properties, crop yields and water use in future.


2021 ◽  
pp. 0734242X2110606
Author(s):  
Maliheh Fouladidorhani ◽  
Mohammad Shayannejad ◽  
Emmanuel Arthur

One of the approaches for recycling and reusing agricultural and animal wastes is to pyrolyse the residues and subsequently use them as soil amendments. The prevalence of several feedstocks suggests that it is necessary to investigate the optimal combinations of feedstocks and pyrolysis temperature for use as soil amendments. This study was done to evaluate five combinations of raw materials (sugarcane bagasse, rice husk, cow manure and pine wood) and their biochars produced by slow pyrolysis at 300°C and 500°C for soil amendment. Several physicochemical properties (electrical conductivity (EC), pH, cation exchange capacity (CEC), total organic matter content (C) total porosity (TP), total nitrogen (N), particle density (PD) and bulk density (BD)) were investigated. Comparison among feedstocks showed that the highest PD, BD and CEC were observed in WM (cow manure-pine wood). The pyrolysis process increased the PD, TP, N and monovalent cations and decreased EC, CEC and BD. Compared to the feedstock, pyrolysis increased the N content, but higher temperatures lowered the N content. Pyrolysis at 500°C reduced the EC, N, CEC and biochar yield by 18%, 13%, 21% and 24% respectively, compared to 300°C. Pyrolysis at 500°C increased the pH, Na+ and K+ by 17%, 12% and 22%, respectively, compared to 300°C. Considering the physicochemical properties of biochar and the costs, the bagasse-wood-rice (BWR) combination and temperature of 300°C are suggested for biochar production for soil amendment.


Author(s):  
Manisha . ◽  
Rakesh Kumar ◽  
Hardev Ram ◽  
Rajesh Kumar Meena ◽  
Dinesh Kumar ◽  
...  

Background: Soils of North-Western Indo-Gangetic plains (IGP) are deficient in zinc content which may lead to lower forage yield of cowpea. Henceforth, the adequate supply of zinc either through soil or foliar spray and selection of suitable cultivar of cowpea could enhance the fodder productivity.Methods: A field experiment was laid out in factorial randomized block design during Kharif season, 2019 to assess the effect of different zinc management practices (control; 10 kg ZnSO4; 20 kg ZnSO4; 0.5% ZnSO4 foliar spray at 20 DAS; 0.5% ZnSO4 foliar spray at 20 and 40 DAS) on productivity and profitability of cowpea cultivars (C-152; MFC-08-14; MFC-09-1) and post-harvest fertility status of soil.Result: Cowpea cv. C-152 showed the highest growth attributes, green fodder yield, nutrient content as well as uptake and net returns. Among different zinc management practices, the application of 20 kg ZnSO4 as basal application or 0.5% ZnSO4 foliar spray at 20 and 40 DAS recorded significantly highest growth, green fodder yield, nutrient content as well as uptake and net returns. Significantly highest soil OC, available N, K and Zn were also noted under these treatments. It is inferred that cowpea cv. C-152 and application of either 20 kg ZnSO4 as basal or 0.5% ZnSO4 as foliar spray at 20 and 40 DAS were found the most productive and profitable approach and sustained the soil fertility status.


Author(s):  
Erbia Bressia Gonçalves Araujo ◽  
Francisco Vanies da Silva Sá ◽  
Fernanda Andrade de Oliveira ◽  
Lauter Silva Souto ◽  
Emanoela Pereira de Paiva ◽  
...  

The melon crop is normally developed in semiarid regions, where water resources are limited. This scarcity of water is a strong stressor on the crops, and requires the supplementation of existing water supplies with poor quality water, especially saline water. This can impede the growth and production of plants; however, the use of tolerant genotypes may minimize this problem. Thus, a greenhouse experiment was developed at the Federal University of Campina Grande - UFCG, Pombal Campus, Paraiba State, Brazil, in order to study the emergence, initial growth, and tolerance of melon cultivars irrigated with waters of different salt content. We studied three melon cultivars (Gaúcho Redondo, Gaúcho Casca de Carvalho and Halles Best Jumbo) irrigated with five levels of saline water (0.6; 1.2; 1.8; 2.4; and 3.0 dS m-1), arranged in a 3 x 5 factorial scheme, with the treatments distributed in a randomized block design with four replications. The plants seeds were monitored for 30 days after sowing, and at 30 days the growth and salinity tolerance index was evaluated. Cultivar Halles Best Jumbo was the most tolerant to saline water during initial stage of growth, while the Gaucho Redondo was more sensitive to salinity. It was found that saline waters up to 1.8 dS m-1 were suitable for irrigation of melon plants round Gaucho and waters up to 2.4 dS m-1 could be used for irrigation of Gaucho Casca de Carvalho and Halles Best Jumbo crops during the initial growth phase.


Sign in / Sign up

Export Citation Format

Share Document