scholarly journals Review of Different Purification Techniques for Crude Glycerol from Biodiesel Production

Author(s):  
Oluwasegun Soliu Muniru ◽  
Chika Scholastica Ezeanyanaso ◽  
Emmanuel Uzoma Akubueze ◽  
Chima Cartney Igwe ◽  
Gloria Nwakaego Elemo

The global glycerol market has experienced a surplus in recent decades due to an increase in biodiesel production and thus created a new form of challenge in terms of purification of the crude glycerol. Various techniques have been developed worldwide on purification of crude glycerol. These processes include chemical pre-treatment, methanol removal, vacuum distillation, ion exchange, adsorption, solvent extraction and membrane separation technology to mention a few. In Nigeria, domesticating these technologies or techniques to suit our peculiar situation and also be cost effective needs a critical evaluation of all the available options. This review, therefore, summarises the progress of crude glycerol purification technologies using various techniques as compared with the process technology developed by researchers at the Federal Institute of Industrial Research, Oshodi, Lagos Nigeria.

Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1035
Author(s):  
Diego Queiroz Faria de Menezes ◽  
Marília Caroline Cavalcante de Sá ◽  
Tahyná Barbalho Fontoura ◽  
Thiago Koichi Anzai ◽  
Fabio Cesar Diehl ◽  
...  

The present work presents a methodology based on data reconciliation to monitor membrane separation processes reliably, online and in real time for the first time. The proposed methodology was implemented in accordance with the following steps: data acquisition; data pre-treatment; data characterization; data reconciliation; gross error detection; and critical evaluation of measured data with a soft sensor. The acquisition of data constituted the slowest stage of the monitoring process, as expected in real-time applications. The pre-treatment stage was fundamental to assure the robustness of the code and the initial characterization of collected data was carried out offline. The characterization of the data showed that steady-state modeling of the process would be appropriate, also allowing the implementation of faster numerical procedures for the data reconciliation step. The data reconciliation step performed well, quickly and consistently. Thus, data reconciliation allowed the estimation of unmeasured variables, playing the role of a soft sensor and allowing the future installation of a digital twin. Additionally, monitoring of measurement bias constituted a tool for measurement diagnosis. As shown in the manuscript, the proposed methodology can be successfully implemented online and in real time for monitoring of membrane separation processes, as shown through a real dashboard web application developed for monitoring of an actual industrial site.


Author(s):  
. Shivangi ◽  
Rohit Raina ◽  
Manish Mishra ◽  
Shelly Sehgal

Background: Energy production and consumption ratio form the hallmark of the economic prosperity of a country. To keep up with the demand and supply of energy a major switch to biofuels is reasoned but the cost associated with production and the choice of raw material forms two major economical and ethical concerns, especially in the under-developed and developing countries where the food is not sufficiently available to everyone. In this scenario, the use of food sources as raw material becomes unjustified. Purpose: To address these issues, here we made an effort to obtain bioethanol from a non-edible and easily available resource that requires a modest cost of production i.e., a locally available algal bloom. Also, different methods of pre-treatment were employed and scrutinized for their efficacy. These methods of pre-treatment are very cost-effective and easy to administer. Materials and Methods: The algal biomass was pre-treated separately in three ways viz., freeze-thawing, mechanical disruption and rotten wood treatment. The algal cake left out after extraction of lipid content for biodiesel production was also used as a fourth sample. After pre-treatment, the supernatant was collected and estimated for reducing sugar content and allowed to ferment using Saccharomyces cerevisiae. A distillate was obtained and checked for ethanol percentage through gas chromatography. Results: The mechanically disrupted sample yielded the highest percentage of ethanol followed by algal cake, freeze-thawing and rotten wood treatment. Conclusion: Given present food scarcity, the non-edible algae could be a better alternative for bioethanol production as compared to the use of conventional food crops. Through this study, we have found that a better yield can be achieved if the algal biomass is pre-treated via mechanical disruption.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (09) ◽  
pp. 519-532 ◽  
Author(s):  
Mark Crisp ◽  
Richard Riehle

Polyaminopolyamide-epichlorohydrin (PAE) resins are the predominant commercial products used to manufacture wet-strengthened paper products for grades requiring wet-strength permanence. Since their development in the late 1950s, the first generation (G1) resins have proven to be one of the most cost-effective technologies available to provide wet strength to paper. Throughout the past three decades, regulatory directives and sustainability initiatives from various organizations have driven the development of cleaner and safer PAE resins and paper products. Early efforts in this area focused on improving worker safety and reducing the impact of PAE resins on the environment. These efforts led to the development of resins containing significantly reduced levels of 1,3-dichloro-2-propanol (1,3-DCP) and 3-monochloropropane-1,2-diol (3-MCPD), potentially carcinogenic byproducts formed during the manufacturing process of PAE resins. As the levels of these byproducts decreased, the environmental, health, and safety (EH&S) profile of PAE resins and paper products improved. Recent initiatives from major retailers are focusing on product ingredient transparency and quality, thus encouraging the development of safer product formulations while maintaining performance. PAE resin research over the past 20 years has been directed toward regulatory requirements to improve consumer safety and minimize exposure to potentially carcinogenic materials found in various paper products. One of the best known regulatory requirements is the recommendations of the German Federal Institute for Risk Assessment (BfR), which defines the levels of 1,3-DCP and 3-MCPD that can be extracted by water from various food contact grades of paper. These criteria led to the development of third generation (G3) products that contain very low levels of 1,3-DCP (typically <10 parts per million in the as-received/delivered resin). This paper outlines the PAE resin chemical contributors to adsorbable organic halogens and 3-MCPD in paper and provides recommendations for the use of each PAE resin product generation (G1, G1.5, G2, G2.5, and G3).


2008 ◽  
Vol 59 (5) ◽  
Author(s):  
Mirela Dulama ◽  
Nicoleta Deneanu ◽  
Cristian Dulama ◽  
Margarit Pavelescu

The paper presents the experimental tests concerning the treatment by membrane techniques of radioactive aqueous waste. Solutions, which have been treated by using the bench-scale installation, were radioactive simulated secondary wastes from the decontamination process with modified POD. Generally, an increasing of the retention is observed for most of the contaminants in the reverse osmosis experiments with pre-treatment steps. The main reason for taking a chemical treatment approach was to selectively remove soluble contaminants from the waste. In the optimization part of the precipitation step, several precipitation processes were compared. Based on this comparison, mixed [Fe(CN)6]4-/Al3+/Fe2+ was selected as a precipitation process applicable for precipitation of radionuclides and flocculation of suspended solid. Increased efficiencies for cesium radionuclides removal were obtained in natural zeolite adsorption pre-treatment stages and this was due to the fact that volcanic tuff used has a special affinity for this element. Usually, the addition of powdered active charcoal serves as an advanced purifying method used to remove organic compounds and residual radionuclides; thus by analyzing the experimental data (for POD wastes) one can observe a decreasing of about 50% for cobalt isotopes subsequently to the active charcoal adsorption.. The semipermeable membranes were used, which were prepared by the researchers from the Research Center for Macromolecular Materials and Membranes, Bucharest. The process efficiency was monitored by gamma spectrometry.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1437
Author(s):  
Jing Yi Ong ◽  
Andrew Pike ◽  
Ling Ling Tan

The presence of mycotoxins in foodstuffs and feedstuffs is a serious concern for human health. The detection of mycotoxins is therefore necessary as a preventive action to avoid the harmful contamination of foodstuffs and animal feed. In comparison with the considerable expense of treating contaminated foodstuffs, early detection is a cost-effective way to ensure food safety. The high affinity of bio-recognition molecules to mycotoxins has led to the development of affinity columns for sample pre-treatment and the development of biosensors for the quantitative analysis of mycotoxins. Aptamers are a very attractive class of biological receptors that are currently in great demand for the development of new biosensors. In this review, the improvement in the materials and methodology, and the working principles and performance of both conventional and recently developed methods are discussed. The key features and applications of the fundamental recognition elements, such as antibodies and aptamers are addressed. Recent advances in aptasensors that are based on different electrochemical (EC) transducers are reviewed in detail, especially from the perspective of the diagnostic mechanism; in addition, a brief introduction of some commercially available mycotoxin detection kits is provided.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 793
Author(s):  
Uroš Zupančič ◽  
Joshua Rainbow ◽  
Pedro Estrela ◽  
Despina Moschou

Printed circuit boards (PCBs) offer a promising platform for the development of electronics-assisted biomedical diagnostic sensors and microsystems. The long-standing industrial basis offers distinctive advantages for cost-effective, reproducible, and easily integrated sample-in-answer-out diagnostic microsystems. Nonetheless, the commercial techniques used in the fabrication of PCBs produce various contaminants potentially degrading severely their stability and repeatability in electrochemical sensing applications. Herein, we analyse for the first time such critical technological considerations, allowing the exploitation of commercial PCB platforms as reliable electrochemical sensing platforms. The presented electrochemical and physical characterisation data reveal clear evidence of both organic and inorganic sensing electrode surface contaminants, which can be removed using various pre-cleaning techniques. We demonstrate that, following such pre-treatment rules, PCB-based electrodes can be reliably fabricated for sensitive electrochemical biosensors. Herein, we demonstrate the applicability of the methodology both for labelled protein (procalcitonin) and label-free nucleic acid (E. coli-specific DNA) biomarker quantification, with observed limits of detection (LoD) of 2 pM and 110 pM, respectively. The proposed optimisation of surface pre-treatment is critical in the development of robust and sensitive PCB-based electrochemical sensors for both clinical and environmental diagnostics and monitoring applications.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Naef A. A. Qasem ◽  
Ramy H. Mohammed ◽  
Dahiru U. Lawal

AbstractRemoval of heavy metal ions from wastewater is of prime importance for a clean environment and human health. Different reported methods were devoted to heavy metal ions removal from various wastewater sources. These methods could be classified into adsorption-, membrane-, chemical-, electric-, and photocatalytic-based treatments. This paper comprehensively and critically reviews and discusses these methods in terms of used agents/adsorbents, removal efficiency, operating conditions, and the pros and cons of each method. Besides, the key findings of the previous studies reported in the literature are summarized. Generally, it is noticed that most of the recent studies have focused on adsorption techniques. The major obstacles of the adsorption methods are the ability to remove different ion types concurrently, high retention time, and cycling stability of adsorbents. Even though the chemical and membrane methods are practical, the large-volume sludge formation and post-treatment requirements are vital issues that need to be solved for chemical techniques. Fouling and scaling inhibition could lead to further improvement in membrane separation. However, pre-treatment and periodic cleaning of membranes incur additional costs. Electrical-based methods were also reported to be efficient; however, industrial-scale separation is needed in addition to tackling the issue of large-volume sludge formation. Electric- and photocatalytic-based methods are still less mature. More attention should be drawn to using real wastewaters rather than synthetic ones when investigating heavy metals removal. Future research studies should focus on eco-friendly, cost-effective, and sustainable materials and methods.


2014 ◽  
Vol 44 (8) ◽  
pp. 1448-1451 ◽  
Author(s):  
Rafael Ernesto Balen ◽  
Patrick Nereu Tetu ◽  
Robie Allan Bombardelli ◽  
Paulo Cesar Pozza ◽  
Fábio Meurer

The increase in global biodiesel production is originating a glycerol surplus, which has no defined destination. An alternative to overcome this problem is its use as energy source in animal feeding. In Brazil, Pacu (Piaractus mesopotamicus) is one of the most farmed native fish species, whereas Silver catfish (Rhamdia quelen) is suitable for production in subtropical region. Considering little knowledge about crude glycerol utilization in feeds for Neotropical fish species, it was evaluated the apparent digestibility coefficients (ADCs) for energy of crude glycerol for P. mesopotamicus and R. quelen. The digestibility and digestible energy content of crude glycerol can be considered excellent even when compared to energy of common ingredients such as maize and wheat, presenting 0.97 and 0.89 of energy ADCs, and 15.2 and 13.95MJ kg-1 of digestible energy for Pacu and Silver catfish, respectively. In conclusion, crude glycerol is an energetic ingredient with good potential in Brazilian native fish diets.


Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 427 ◽  
Author(s):  
Muhammad Awais ◽  
Sa’ed A Musmar ◽  
Faryal Kabir ◽  
Iram Batool ◽  
Muhammad Asif Rasheed ◽  
...  

Biodiesel is a renewable fuel usually produced from vegetable oils and animal fats. This study investigates the extraction of oil and its conversion into biodiesel by base-catalyzed transesterification. Firstly, the effect of various solvents (methanol, n-hexane, chloroform, di-ethyl ether) on extraction of oil from non-edible crops, such as R. communis and M. azedarach, were examined. It was observed that a higher concentration of oil was obtained from R. communis (43.6%) as compared to M. azedarach (35.6%) by using methanol and n-hexane, respectively. The extracted oils were subjected to NaOH (1%) catalyzed transesterification by analyzing the effect of oil/methanol molar ratio (1:4, 1:6, 1:8 and 1:10) and varying temperature (20, 40, 60 and 80 °C) for 2.5 h of reaction time. M. azedarach yielded 88% and R. communis yielded 93% biodiesel in 1:6 and 1:8 molar concentrations at ambient temperature whereas, 60 °C was selected as an optimum temperature, giving 90% (M. azedarach) and 94% (R. communis) biodiesel. The extracted oil and biodiesel were characterized for various parameters and most of the properties fulfilled the American Society for Testing and Materials (ASTM) standard biodiesel. The further characterization of fatty acids was done by Gas Chromatography/Mass Spectrometer (GC/MS) and oleic acid was found to be dominant in M. azedarach (61.5%) and R. communis contained ricinoleic acid (75.53%). Furthermore, the functional groups were analyzed by Fourier Transform Infrared Spectroscopy. The results suggested that both of the oils are easily available and can be used for commercial biodiesel production at a cost-effective scale.


2002 ◽  
Vol 45 (10) ◽  
pp. 321-328 ◽  
Author(s):  
H.J. Gijzen

After the discovery of methane gas by Alessandro Volta in 1776, it took about 100 years before anaerobic processes for the treatment of wastewater and sludges were introduced. The development of high rate anaerobic digesters for the treatment of sewage and industrial wastewater took until the nineteen-seventies and for solid waste even till the nineteen-eighties. All digesters have in common that they apply natural anaerobic consortia of microorganisms for degradation and transformation processes. In view of this, it could be rewarding to evaluate the efficiency of natural ecosystems for their possible application. Examples of high rate anaerobic natural systems include the forestomach of ruminants and the hindgut of certain insects, such as termites and cockroaches. These “natural reactors” exhibit volumetric methane production rates as high as 35 l/l.d. The development of anaerobic reactors based on such natural anaerobic systems could produce eco-technologies for the effective management of a wide variety of solid wastes and industrial wastewater. Important limitations of anaerobic treatment of domestic sewage relate to the absence of nutrient and pathogen removal. A combination of anaerobic pre-treatment followed by photosynthetic post-treatment is proposed for the effective recovery of energy and nutrients from sewage. This eco-technology approach is based on the recognition that the main nutrient assimilating capacity is housed in photosynthetic plants. The proposed anaerobic-photosynthetic process is energy efficient, cost effective and applicable under a wide variety of rural and urban conditions. In conclusion: a natural systems approach towards waste management could generate affordable eco-technologies for effective treatment and resource recovery.


Sign in / Sign up

Export Citation Format

Share Document