scholarly journals Anti-Inflammatory Effects of Rhamnetin on Bradykinin-Induced Matrix Metalloproteinase-9 Expression and Cell Migration in Rat Brain Astrocytes

2022 ◽  
Vol 23 (2) ◽  
pp. 609
Author(s):  
Chien-Chung Yang ◽  
Li-Der Hsiao ◽  
Ya-Fang Shih ◽  
Zih-Yao Yu ◽  
Chuen-Mao Yang

Bradykinin (BK) has been shown to induce matrix metalloproteinase (MMP)-9 expression and participate in neuroinflammation. The BK/MMP-9 axis can be a target for managing neuroinflammation. Our previous reports have indicated that reactive oxygen species (ROS)-mediated nuclear factor-kappaB (NF-κB) activity is involved in BK-induced MMP-9 expression in rat brain astrocytes (RBA-1). Rhamnetin (RNT), a flavonoid compound, possesses antioxidant and anti-inflammatory effects. Thus, we proposed RNT could attenuate BK-induced response in RBA-1. This study aims to approach mechanisms underlying RNT regulating BK-stimulated MMP-9 expression, especially ROS and NF-κB. We used pharmacological inhibitors and siRNAs to dissect molecular mechanisms. Western blotting and gelatin zymography were used to evaluate protein and MMP-9 expression. Real-time PCR was used for gene expression. Wound healing assay was applied for cell migration. 2ʹ,7ʹ-dichlorodihydrofluorescein diacetate (H2DCF-DA) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) were used for ROS generation and NOX activity, respectively. Promoter luciferase assay and chromatin immunoprecipitation (ChIP) assay were applied to detect gene transcription. Our results showed that RNT inhibits BK-induced MMP-9 protein and mRNA expression, promoter activity, and cell migration in RBA-1 cells. Besides, the levels of phospho-PKCδ, NOX activity, ROS, phospho-ERK1/2, phospho-p65, and NF-κB p65 binding to MMP-9 promoter were attenuated by RNT. In summary, RNT attenuates BK-enhanced MMP-9 upregulation through inhibiting PKCδ/NOX/ROS/ERK1/2-dependent NF-κB activity in RBA-1.

3 Biotech ◽  
2020 ◽  
Vol 10 (11) ◽  
Author(s):  
Qi Zheng ◽  
Jane J. Yu ◽  
Chenggang Li ◽  
Jiali Li ◽  
Jiping Wang ◽  
...  

AbstractOur study aims to investigate the impact of miR-224 on cell migration and invasion in colorectal cancer (CRC) as well as its molecular mechanisms. The results showed that miR-224 was significantly upregulated in CRC compared to normal tissues via the TCGA database. Overexpression of miR-224 promoted CRC cell migration and invasion, while inhibition of miR-224 demonstrated the opposite result via transwell assays. In addition, we found that BTRC was a target gene of miR-224 through the miRecords database and dual-luciferase assay, while western blot together with RT-qPCR showed that inhibition of miR-224 led to elevated BTRC expression in protein level but not in mRNA level, and also decreased the expression of β-catenin. In reference to the Human Protein Atlas, BTRC protein expression was higher in normal tissues than in CRC tissues. In conclusion, miR-224 regulates its target BTRC protein expression and its related Wnt/β-catenin pathway. Its impact on cell migration and invasion in CRC cells suggested that miR-224 could be a prospective therapeutic target for early-stage non-metastatic CRC.


Antioxidants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 739
Author(s):  
Joo-Hoo Park ◽  
Jae-Min Shin ◽  
Hyun-Woo Yang ◽  
Tae Hoon Kim ◽  
Seung Hoon Lee ◽  
...  

Cigarette smoke exposure has been shown to be associated with chronic rhinosinusitis and tissue remodeling. The present study aimed to investigate the effects of cigarette smoke extract (CSE) on matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) production in nasal fibroblasts and to determine the underlying molecular mechanisms. Primary nasal fibroblasts from six patients were isolated and cultured. After the exposure of fibroblasts to CSE, the expression levels of MMP-2, MMP-9, TIMP-1, and TIMP-2 were measured by real-time PCR, ELISA, and immunofluorescence staining. The enzymatic activities of MMP-2 and MMP-9 were measured by gelatin zymography. Reactive oxygen species (ROS) production was analyzed using dichloro-dihydro-fluorescein diacetate and Amplex Red assays. PI3K/Akt phosphorylation and NF-κB activation were determined by Western blotting and luciferase assay. CSE significantly increased MMP-2 expression and inhibited TIMP-2 expression but did not affect MMP-9 and TIMP-1 expression. Furthermore, CSE significantly induced ROS production. However, treatment with ROS scavengers, specific PI3K/Akt inhibitors, NF-κB inhibitor, and glucocorticosteroids significantly decreased MMP-2 expression and increased TIMP-2 expression. Our results suggest that steroids inhibit CSE-regulated MMP-2 and TIMP-2 production and activation through the ROS/ PI3K, Akt, and NF-κB signaling pathways in nasal fibroblasts. CSE may contribute to the pathogenesis of chronic rhinosinusitis by regulating MMP-2 and TIMP-2 expression.


2019 ◽  
Vol 21 (1) ◽  
pp. 259 ◽  
Author(s):  
Chien-Chung Yang ◽  
Chih-Chung Lin ◽  
Li-Der Hsiao ◽  
Jing-Ming Kuo ◽  
Hui-Ching Tseng ◽  
...  

Neuroinflammation is a landmark of neuroinflammatory and neurodegenerative diseases. Matrix metalloproteinase (MMP)-9, one member of MMPs, has been shown to contribute to the pathology of these brain diseases. Several experimental models have demonstrated that lipopolysaccharide (LPS) exerts a pathological role through Toll-like receptors (TLRs) in neuroinflammation and neurodegeneration. However, the mechanisms underlying LPS-induced MMP-9 expression in rat brain astrocytes (RBA-1) are not completely understood. Here, we applied pharmacological inhibitors and siRNA transfection to assess the levels of MMP-9 protein, mRNA, and promoter activity, as well as protein kinase phosphorylation in RBA-1 cells triggered by LPS. We found that LPS-induced expression of pro-form MMP-9 and cell migration were mediated through TLR4, proto-oncogene tyrosine-protein kinase (c-Src), proline-rich tyrosine kinase 2 (Pyk2), platelet-derived growth factor receptor (PDGFR), phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), p38 mitogen-activated protein kinase (MAPK), and Jun amino-terminal kinase (JNK)1/2 signaling molecules in RBA-1 cells. In addition, LPS-stimulated binding of c-Jun to the MMP-9 promoter was confirmed by chromatin immunoprecipitation (ChIP) assay, which was blocked by pretreatment with c-Src inhibitor II, PF431396, AG1296, LY294002, Akt inhibitor VIII, p38 MAP kinase inhibitor VIII, SP600125, and tanshinone IIA. These results suggest that in RBA-1 cells, LPS activates a TLR4/c-Src/Pyk2/PDGFR/PI3K/Akt/p38 MAPK and JNK1/2 pathway, which in turn triggers activator protein 1 (AP-1) activation and ultimately induces MMP-9 expression and cell migration.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 985 ◽  
Author(s):  
Abdelhafid Nani ◽  
Babar Murtaza ◽  
Amira Sayed Khan ◽  
Naim Akhtar Khan ◽  
Aziz Hichami

Nutrition transition can be defined as shifts in food habits, and it is characterized by high-fat (chiefly saturated animal fat), hypercaloric and salty food consumption at the expense of dietary fibers, minerals and vitamins. Western dietary patterns serve as a model for studying the impact of nutrition transition on civilization diseases, such as obesity, which is commonly associated with oxidative stress and inflammation. In fact, reactive oxygen species (ROS) overproduction can be associated with nuclear factor-κB (NF-κB)-mediated inflammation in obesity. NF-κB regulates gene expression of several oxidant-responsive adipokines including tumor necrosis factor-α (TNF-α). Moreover, AMP-activated protein kinase (AMPK), which plays a pivotal role in energy homeostasis and in modulation of metabolic inflammation, can be downregulated by IκB kinase (IKK)-dependent TNF-α activation. On the other hand, adherence to a Mediterranean-style diet is highly encouraged because of its healthy dietary pattern, which includes antioxidant nutraceuticals such as polyphenols. Indeed, hydroxycinnamic derivatives, quercetin, resveratrol, oleuropein and hydroxytyrosol, which are well known for their antioxidant and anti-inflammatory activities, exert anti-obesity proprieties. In this review, we highlight the impact of the most common polyphenols from Mediterranean foods on molecular mechanisms that mediate obesity-related oxidative stress and inflammation. Hence, we discuss the effects of these polyphenols on a number of signaling pathways. We note that Mediterranean diet (MedDiet) dietary polyphenols can de-regulate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) and NF-κB-mediated oxidative stress, and metabolic inflammation. MedDiet polyphenols are also effective in upregulating downstream effectors of several proteins, chiefly AMPK.


Antioxidants ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 36 ◽  
Author(s):  
Marta Gallardo-Fernández ◽  
Ruth Hornedo-Ortega ◽  
Isabel M. Alonso-Bellido ◽  
José A. Rodríguez-Gómez ◽  
Ana M. Troncoso ◽  
...  

Neuroinflammation is a common feature shared by neurodegenerative disorders, such as Parkinson’s disease (PD), and seems to play a key role in their development and progression. Microglia cells, the principal orchestrators of neuroinflammation, can be polarized in different phenotypes, which means they are able to have anti-inflammatory, pro-inflammatory, or neurodegenerative effects. Increasing evidence supports that the traditional Mediterranean dietary pattern is related to the reduction of cognitive decline in neurodegenerative diseases. A considerable intake of plant foods, fish, and extra virgin olive oil (EVOO), as well as a moderate consumption of red wine, all characteristic of the Mediterranean diet (MD), are behind these effects. These foods are especially rich in polyphenols, being the most relevant in the MD hydroxytyrosol (HT) and their derivatives present in EVOO, which have demonstrated a wide array of biological activities. Here, we demonstrate that HT is able to reduce the inflammation induced by two different stimuli: lipopolysaccharide and α-synuclein. We also study the possible molecular mechanisms involved in the anti-inflammatory effect of HT, including the study of nuclear factor kappa B (NF-κB), mitogen-activated protein kinases (MAPKs), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and inflammasome. Our data support the use of HT to prevent the inflammation associated with PD and shed light into the relationship between MD and this neurological disorder.


Reproduction ◽  
2010 ◽  
Vol 139 (4) ◽  
pp. 789-798 ◽  
Author(s):  
Milica Jovanović ◽  
Ivana Stefanoska ◽  
Ljiljana Radojčić ◽  
Ljiljana Vićovac

Interleukin-8 (IL8/CXCL8) is present in decidua and trophoblast, which also expresses the IL8 receptors, CXCR1 and CXCR2. IL8 was shown to stimulate trophoblast migration. Matrix metalloproteinase (MMP)2, MMP9, and integrins α5β1and α1β1were found to play important roles in trophoblast invasion. We hypothesized that IL8 would increase this cell migration and invasion by HTR-8/SVneo cells through the activity of MMPs and integrins. Isolated first trimester of pregnancy cytotrophoblast (CT) and HTR-8/SVneo cell line were used. Migration was studied by monolayer wounding test, and invasion by Matrigel invasion test. The effects of IL8 on MMPs and integrin subunit expression were determined in HTR-8/SVneo cells by gelatin zymography and western blot respectively. The results that were obtained showed that exogenous IL8 stimulated HTR-8/SVneo cell migration and invasion. MMP2 and MMP9 levels were stimulated to 182% (P<0.01) and 134% (P<0.01) respectively. Integrin α5expression was increased to 119% (P<0.05) and integrin β1expression to 173% (P<0.001) of the control values. The data that were obtained show for the first time the sensitivity of the HTR-8/SVneo cells, in addition to isolated first trimester CT, to IL8. Exogenous IL8/CXCL8 increased trophoblast cell migration and invasion, which may be partly attributable to stimulation of MMP2 and MMP9 levels and an increase in integrins. HTR-8/SVneo cell viability and proliferation were also increased.


2020 ◽  
Vol 28 (2) ◽  
pp. 360-376 ◽  
Author(s):  
Atefeh Amiri ◽  
Maryam Mahjoubin-Tehran ◽  
Zatollah Asemi ◽  
Alimohammad Shafiee ◽  
Sarah Hajighadimi ◽  
...  

: Cancer and inflammatory disorders are two important public health issues worldwide with significant socio.economic impacts. Despite several efforts, the current therapeutic platforms are associated with severe limitations. Therefore, developing new therapeutic strategies for the treatment of these diseases is a top priority. Besides current therapies, the utilization of natural compounds has emerged as a new horizon for the treatment of cancer and inflammatory disorders as well. Such natural compounds could be used either alone or in combination with the standard cancer therapeutic modalities such as chemotherapy, radiotherapy, and immunotherapy. Resveratrol is a polyphenolic compound that is found in grapes as well as other foods. It has been found that this medicinal agent displays a wide pharmacological spectrum, including anti-cancer, anti-inflammatory, anti-microbial, and antioxidant activities. Recently, clinical and pre-clinical studies have highlighted the anti-cancer and anti-inflammatory effects of resveratrol. Increasing evidence revealed that resveratrol exerts its therapeutic effects by targeting various cellular and molecular mechanisms. Among cellular and molecular targets that are modulated by resveratrol, microRNAs (miRNAs) have appeared as key targets. MiRNAs are short non-coding RNAs that act as epigenetic regulators. These molecules are involved in many processes that are involved in the initiation and progression of cancer and inflammatory disorders. Herein, we summarized various miRNAs that are directly/indirectly influenced by resveratrol in cancer and inflammatory disorders.


2019 ◽  
Vol 19 (25) ◽  
pp. 2271-2282 ◽  
Author(s):  
Bo Lu ◽  
Xue-Hui Liu ◽  
Si-Ming Liao ◽  
Zhi-Long Lu ◽  
Dong Chen ◽  
...  

Polysialic acid (polySia) is a novel glycan that posttranslationally modifies neural cell adhesion molecules (NCAMs) in mammalian cells. Up-regulation of polySia-NCAM expression or NCAM polysialylation is associated with tumor cell migration and progression in many metastatic cancers and neurocognition. It has been known that two highly homologous mammalian polysialyltransferases (polySTs), ST8Sia II (STX) and ST8Sia IV (PST), can catalyze polysialylation of NCAM, and two polybasic domains, polybasic region (PBR) and polysialyltransferase domain (PSTD) in polySTs play key roles in affecting polyST activity or NCAM polysialylation. However, the molecular mechanisms of NCAM polysialylation and cell migration are still not entirely clear. In this minireview, the recent research results about the intermolecular interactions between the PBR and NCAM, the PSTD and cytidine monophosphate-sialic acid (CMP-Sia), the PSTD and polySia, and as well as the intramolecular interaction between the PBR and the PSTD within the polyST, are summarized. Based on these cooperative interactions, we have built a novel model of NCAM polysialylation and cell migration mechanisms, which may be helpful to design and develop new polysialyltransferase inhibitors.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Fangfang Yang ◽  
Hua Wang ◽  
Bianbian Yan ◽  
Tong Li ◽  
Lulu Min ◽  
...  

Abstract The molecular pathogenesis of colorectal cancer (CRC) has been widely investigated in recent years. Accumulating evidence has indicated that microRNA (miRNA) dysregulation participates in the processes of driving CRC initiation and progression. Aberrant expression of miR-1301 has been found in various tumor types. However, its role in CRC remains to be elucidated. In the present study, we identified miR-1301 was enriched in normal colorectal tissues and significantly down-regulated in CRC. Decreased level of miR-1301 strongly correlated with aggressive pathological characteristics, including advanced stage and metastasis. Bioinformatics and dual luciferase assay demonstrated that STAT3 is a direct target of miR-1301. Gain and loss-of-function assays showed that miR-1301 had no effect on cell proliferation. Overexpression of miR-1301 suppressed cell migration and invasion capacity of pSTA3-positive LoVo cells, but not pSTAT3-negative SW480 cells, while inhibition of miR-1301 consistently promoted cell migration and invasion in both cell lines. Additionally, miR-1301 inhibition restored the suppressed migration and invasion of STAT3- knockdown LoVo cells. MiR-1301 functioned as a tumor suppressor to modulate the IL6/STAT3 signaling pathway. In summary, this study highlights the significant role of miR- 1301/STAT3 axis in CRC metastasis.


Sign in / Sign up

Export Citation Format

Share Document