scholarly journals Targeted LC-ESI-MS2 characterization of human milk oligosaccharide diversity at 6 to 16 weeks post-partum reveals clear staging effects and distinctive milk groups

2020 ◽  
Vol 412 (25) ◽  
pp. 6887-6907 ◽  
Author(s):  
Marko Mank ◽  
Hans Hauner ◽  
Albert J. R. Heck ◽  
Bernd Stahl

Abstract Many molecular components in human milk (HM), such as human milk oligosaccharides (HMOs), assist in the healthy development of infants. It has been hypothesized that the functional benefits of HM may be highly dependent on the abundance and individual fine structures of contained HMOs and that distinctive HM groups can be defined by their HMO profiles. However, the structural diversity and abundances of individual HMOs may also vary between milk donors and at different stages of lactations. Improvements in efficiency and selectivity of quantitative HMO analysis are essential to further expand our understanding about the impact of HMO variations on healthy early life development. Hence, we applied here a targeted, highly selective, and semi-quantitative LC-ESI-MS2 approach by analyzing 2 × 30 mature human milk samples collected at 6 and 16 weeks post-partum. The analytical approach covered the most abundant HMOs up to hexasaccharides and, for the first time, also assigned blood group A and B tetrasaccharides. Principal component analysis (PCA) was employed and allowed for automatic grouping and assignment of human milk samples to four human milk groups which are related to the maternal Secretor (Se) and Lewis (Le) genotypes. We found that HMO diversity varied significantly between these four HM groups. Variations were driven by HMOs being either dependent or independent of maternal genetic Se and Le status. We found preliminary evidence for an additional HM subgroup within the Se- and Le-positive HM group I. Furthermore, the abundances of 6 distinct HMO structures (including 6′-SL and 3-FL) changed significantly with progression of lactation.

Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1476
Author(s):  
Jian Zhang ◽  
Ai Zhao ◽  
Shiyun Lai ◽  
Qingbin Yuan ◽  
Xiaojiang Jia ◽  
...  

Our knowledge related to human milk proteins is still limited. The present study determined the changes in multiple human milk proteins during the first six months of lactation, investigated the influencing factors of milk proteins, and explored the impact of milk proteins on infant growth. A total of 105 lactating women and their full-term infants from China were prospectively surveyed in this research. Milk samples were collected at 1–5 days, 8–14 days, 1 month, and 6 months postpartum. Concentrations of total protein and α-lactalbumin were measured in all milk samples, and concentrations of lactoferrin, osteopontin, total casein, β-casein, αs−1 casein, and κ-casein were measured in milk from 51 individuals using ultra performance liquid chromatography coupled with mass spectrometry. The concentration of measured proteins in the milk decreased during the first six months of postpartum (p-trend < 0.001). Maternal age, mode of delivery, maternal education, and income impacted the longitudinal changes in milk proteins (p-interaction < 0.05). Concentrations of αs−1 casein in milk were inversely associated with the weight-for-age Z-scores of the infants (1 m: r −0.29, p 0.038; 6 m: r −0.33, p 0.020). In conclusion, the concentration of proteins in milk decreased over the first six months postpartum, potentially influenced by maternal demographic and delivery factors. Milk protein composition may influence infant weights.


2021 ◽  
Vol 7 ◽  
Author(s):  
Aidong Wang ◽  
Petya Koleva ◽  
Elloise du Toit ◽  
Donna T. Geddes ◽  
Daniel Munblit ◽  
...  

Introduction: The functional role of milk for the developing neonate is an area of great interest, and a significant amount of research has been done. However, a lot of work remains to fully understand the complexities of milk, and the variations imposed through genetics. It has previously been shown that both secretor (Se) and Lewis blood type (Le) status impacts the human milk oligosaccharide (HMO) content of human milk. While some studies have compared the non-HMO milk metabolome of Se+ and Se− women, none have reported on the non-HMO milk metabolome of Se− and Le– mothers.Method and Results: To determine the differences in the non-HMO milk metabolome between Se–Le– mothers and other HMO phenotypes (Se+Le+, Se+Le–, and Se–Le+), 10 milk samples from 10 lactating mothers were analyzed using nuclear magnetic resonance (NMR) spectroscopy. Se or Le HMO phenotypes were assigned based on the presence and absence of 6 HMOs generated by the Se and Le genes. After classification, 58 milk metabolites were compared among the HMO phenotypes. Principal component analysis (PCA) identified clear separation between Se–Le– milk and the other milks. Fold change analysis demonstrated that the Se–Le– milk had major differences in free fatty acids, free amino acids, and metabolites related to energy metabolism.Conclusion: The results of this brief research report suggest that the milk metabolome of mothers with the Se–Le– phenotype differs in its non-HMO metabolite composition from mothers with other HMO phenotypes.


2021 ◽  
Author(s):  
Marta Selma-Royo ◽  
Christine Bauerl ◽  
Desiree Mena-Tudela ◽  
Laia Aguilar-Camprubi ◽  
Francisco Jose Perez-Cano ◽  
...  

Importance: Limited data are available on COVID-19 vaccine impact in lactating women. Objective: To evaluate the impact of different COVID-19 vaccines on specific anti-SARS-CoV-2 IgA and IgG levels in human milk. Design, Settings and Participants: In this prospective observational study in Spain, 75 lactating women from priority groups receiving vaccination against SARS-CoV-2 were included (January to April 2021). Human milk samples were collected at seven-time points. A group with confirmed SARS-CoV-2 infection (n=19) and a group of women from prepandemic time (n=13) were included. Exposure: mRNA vaccines (BNT162b2 and mRNA-1273) and adenovirus-vectored vaccine (ChAdOx1 nCoV-19). Main Outcome(s) and Measure(s): Presence of IgA and IgG against RBD SARS-CoV-2 in breast milk. Results: Seventy-five vaccinated lactating women [mean age, 34.9±3.7 years] of whom 96% were Caucasic and 92% were health care workers. A total of 417 milk samples were included and vaccine distribution was BioNTech/Pfizer (BNT162b2, n=30), Moderna (mRNA-1273, n=21), and AstraZeneca (ChAdOx1 nCoV-19, n=24). For each vaccine, 7 time points were collected from baseline up to 25 days after the 1st dose and same points were collected for mRNA vaccines 30 days after 2nd dose. A strong reactivity was observed for IgG and IgA after vaccination mainly after the 2nd dose. Presence and the persistence of specific SARS-CoV-2 antibodies in breast milk were dependent on the vaccine-type and, on previous virus exposure. High inter-variability was observed, being relevant for IgA antibodies. IgG levels were significantly higher than those observed in milk from COVID-19 women while IgA levels were lower. Women with previous COVID-19 increased the IgG levels after the 1st dose to a similar level observed in vaccinated women after the 2nd dose. Conclusions and Relevance: Breast milk from vaccinated women contains anti-SARS-CoV-2 IgA and IgG, with highest after the 2nd dose. Levels were dependent on vaccine type and previous exposure to SARS-CoV-2. Previous COVID-19 influenced the vaccine effect after a single dose, which could be especially relevant in the design of vaccination protocols . Further studies are warranted to demonstrate the potential protective role of these antibodies against COVID-19 in infants from vaccinated and infected mothers through breastfeeding.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 818-818
Author(s):  
Clark Sims ◽  
Audrey , Martinez ◽  
Aline Andres

Abstract Objectives Human milk (HM) is impacted by both maternal obesity and diet. HM from women with obesity has higher fat, leptin and insulin concentrations. Additionally, maternal dietary fat intake is associated with increased HM fat content. The objective of this study was to determine the impact of a Mediterranean meal plan on the composition of HM from women with obesity. Methods In this pilot study, thirteen women with obesity (body mass index (BMI) ≥ 30 kg/m2) enrolled at five months post-partum and followed a provided Mediterranean meal plan focused on reducing fat intake and increasing unsaturated fat and fiber intake for four weeks. Participants’ diet was assessed using Nutrition Data System for Research. HM was collected at baseline and after the 4-week intervention and the concentrations of metabolites, hormones and cytokines were assayed. Wilcoxon signed-rank tests and analysis of variance were used to assess changes in participant diet and HM composition. Summary statistics are presented as mean ± standard deviation. Results The participants’ Healthy Eating Index Score, a measure of diet quality, significantly improved (38.3 ± 5.13 vs. 78.2 ± 6.75, p &lt; 0.001) and total fat intake was significantly lower (99.6 ± 23.3 g vs. 66.9 ± 12.0 g/day, p &lt; 0.001) after the intervention. Human milk leptin (694 ± 464 pg/ml vs. 437 ± 324 pg/ml, p = 0.007) and tumor necrosis factor α (0.515 ± 0.267 pg/ml vs. 0.310 ± 0.127 pg/ml, p = 0.010) concentrations were lower post intervention, whereas HM macronutrient composition was unchanged. The concentrations of several individual human milk oligosaccharides (HMO) and total HMOs (7720 ± 797 nmol/ml vs. 6986 ± 940 nmol/ml, p = 0.049), as well as HM tyrosine concentration (18.2 ± 6.16 nmol/ml vs. 14.5 ± 4.69 nmol/ml, p = 0.005) were significantly lower post intervention. Conclusions The composition of HM from women with obesity can be modulated by short-term adherence to a Mediterranean meal pattern. These findings merit further studies that use longer interventions and examine the impact of any changes in HM composition on infant growth and development. Modifying HM composition via a dietary intervention may provide a novel strategy to promote child development and health. Funding Sources USDA ARS #6026-51,000-010-05S and #6026-51,000-012-06S, NIH/NIDDK R01DK107516, Arkansas Children's Research Institute/Arkansas Biosciences Institute GR037121.


Author(s):  
Lorena Ruiz ◽  
Claudio Alba ◽  
Cristina García-Carral ◽  
Esther A. Jiménez ◽  
Kimberly A. Lackey ◽  
...  

Recent work has demonstrated the existence of large inter-individual and inter-population variability in the microbiota of human milk from healthy women living across variable geographical and socio-cultural settings. However, no studies have evaluated the impact that variable sequencing approaches targeting different 16S rRNA variable regions may have on the human milk microbiota profiling results. This hampers our ability to make meaningful comparisons across studies. In this context, the main purpose of the present study was to re-process and re-sequence the microbiome in a large set of human milk samples (n = 412) collected from healthy women living at diverse international sites (Spain, Sweden, Peru, United States, Ethiopia, Gambia, Ghana and Kenya), by targeting a different 16S rRNA variable region and reaching a larger sequencing depth. Despite some differences between the results obtained from both sequencing approaches were notable (especially regarding alpha and beta diversities and Proteobacteria representation), results indicate that both sequencing approaches revealed a relatively consistent microbiota configurations in the studied cohorts. Our data expand upon the milk microbiota results we previously reported from the INSPIRE cohort and provide, for the first time across globally diverse populations, evidence of the impact that different DNA processing and sequencing approaches have on the microbiota profiles obtained for human milk samples. Overall, our results corroborate some similarities regarding the microbial communities previously reported for the INSPIRE cohort, but some differences were also detected. Understanding the impact of different sequencing approaches on human milk microbiota profiles is essential to enable meaningful comparisons across studies.Clinical Trial Registrationwww.clinicaltrials.gov, identifier NCT02670278.


2019 ◽  
Vol 10 (2) ◽  
pp. 155-163 ◽  
Author(s):  
M. Padilha ◽  
J.M. Iaucci ◽  
V.P. Cabral ◽  
E.M.A. Diniz ◽  
C.R. Taddei ◽  
...  

Human milk is an important source of microorganisms for infant gut colonisation. Although the maternal antibiotic prophylaxis is an important strategy to prevent maternal/neonatal sepsis, it has to be investigated how it may affect the human milk microbiota, especially the genus Bifidobacterium, which has been associated to health benefits. Here, we investigated the impact of the maternal antibiotic prophylaxis on the human milk Bifidobacterium spp. and total bacteria counts, in the first week (short-term) and first month (medium-term) after delivery. Human milk samples were collected from 55 healthy lactating women recruited from the University Hospital of the University of São Paulo at days 7±3 and 30±4 after vaginal delivery. Twenty one volunteers had received maternal antibiotic prophylaxis (MAP group) and 34 had not received MAP (no-MAP group) during or after labour. Total DNA was isolated from milk samples, and the bacterial counts were estimated by quantitative PCR (qPCR). We found lower levels of Bifidobacterium in the MAP group in the first week after delivery (median = 2.1 vs 2.4 log of equivalent cells/ml of human milk, for MAP and no-MAP groups, respectively; P=0.01), although there were no statistical differences in total bacteria count. However, no differences were found in Bifidobacterium counts between the groups at day 30±4 (median = 2.5 vs 2.2 log of equivalent cells/ml of human milk, for MAP and no-MAP groups, respectively; P=0.50). Our results suggest that MAP has a significant impact on Bifidobacterium counts in human milk, reducing this population in the first week after delivery. However, throughout the first month after delivery, the Bifidobacterium counts tend to recover, reaching similar counts to those found in no-MAP group at day 30±4 after delivery.


2021 ◽  
Vol 22 (8) ◽  
pp. 3846
Author(s):  
Veronique Demers-Mathieu ◽  
Dustin J. Hines ◽  
Rochelle M. Hines ◽  
Sirima Lavangnananda ◽  
Shawn Fels ◽  
...  

Background: Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) play a critical role in neurodevelopment, where breast milk is a significant dietary source. The impact of previous COVID-19 infection and mastitis on the concentration of BDNF and NGF in human milk was investigated. Methods: Concentrations of BDNF and NGF were measured via ELISA in human milk samples collected from 12 mothers with a confirmed COVID-19 PCR, 13 mothers with viral symptoms suggestive of COVID-19, and 22 unexposed mothers (pre-pandemic Ctl-2018). These neurotrophins were also determined in 12 mothers with previous mastitis and 18 mothers without mastitis. Results: The NGF concentration in human milk was lower in the COVID-19 PCR and viral symptoms groups than in the unexposed group, but BDNF did not differ significantly. Within the COVID-19 group, BDNF was higher in mothers who reported headaches or loss of smell/taste when compared with mothers without the respective symptom. BDNF was lower in mothers with mastitis than in mothers without mastitis. Conclusions: Previous COVID-19 and mastitis infections changed differently the secretion of NGF and BDNF in human milk. Whether the changes in NGF and BDNF levels in milk from mothers with infection influence their infant’s development remains to be investigated.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Shunhao Zhang ◽  
Tianle Li ◽  
Jing Xie ◽  
Demao Zhang ◽  
Caixia Pi ◽  
...  

AbstractHuman milk is the gold standard for nutrition of infant growth, whose nutritional value is mainly attributed to human milk oligosaccharides (HMOs). HMOs, the third most abundant component of human milk after lactose and lipids, are complex sugars with unique structural diversity which are indigestible by the infant. Acting as prebiotics, multiple beneficial functions of HMO are believed to be exerted through interactions with the gut microbiota either directly or indirectly, such as supporting beneficial bacteria growth, anti-pathogenic effects, and modulation of intestinal epithelial cell response. Recent studies have highlighted that HMOs can boost infants health and reduce disease risk, revealing potential of HMOs in food additive and therapeutics. The present paper discusses recent research in respect to the impact of HMO on the infant gut microbiome, with emphasis on the molecular basis of mechanism underlying beneficial effects of HMOs.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 532
Author(s):  
Mélissa Duplessis ◽  
Annie Fréchette ◽  
William Poisson ◽  
Lya Blais ◽  
Jennifer Ronholm

Milk is an excellent source of vitamin B12 (B12) for humans. Therefore, being able to guarantee a high and consistent concentration of this vitamin would enhance consumer perception of milk as a health food. The aim of the paper was to gather additional knowledge on factors that could explain B12 variation in cow milk through two observational studies: (1) to explore the relationship between milk B12 and ruminal conditions, such as pH and volatile fatty acid concentrations; and (2) to examine the impact of bedding on B12 concentrations in bulk tank milk. For study 1, a total of 72 milk and ruminal liquid samples were obtained from 45 Holstein cows fitted with ruminal cannula between 10 and 392 days of lactation. For study 2, bulk tank milk samples were obtained from 83 commercial herds; 26 herds used recycled manure solid bedding and 57 used straw bedding. Milk samples were analyzed for B12 using radioassay. Using principal component regression analysis, we observed that ruminal pH and the acetate:propionate ratio for cows receiving the early lactation ration were positively correlated with milk B12. Bedding did not influence milk B12 in bulk tanks, which averaged 4276 pg/mL. In conclusion, as B12 is synthesized by ruminal bacteria, optimizing ruminal conditions had a positive effect on milk B12, while bedding management had no influence.


2020 ◽  
Author(s):  
Lauren LeMay-Nedjelski ◽  
James Butcher ◽  
Sylvia H. Ley ◽  
Michelle R. Asbury ◽  
Anthony J. Hanley ◽  
...  

Abstract Background: Few studies have examined how maternal body mass index (BMI), mode of delivery and ethnicity affect the microbial composition of human milk and none have examined associations with maternal metabolic status. Given the high prevalence of maternal adiposity and impaired glucose metabolism, and the importance of human milk in the colonization of the infant gut, we systematically investigated the associations between these maternal factors and milk microbial composition and functionality. Methods: Women ≥20 years were recruited during pregnancy and milk samples were collected at 3 months post-partum (NCT01405547). Demographic data, weight, height, and a 3-hour oral glucose tolerance test were conducted at 30 (95% CI: 25-33) weeks gestation. Metagenomic DNA extraction and 16S ribosomal RNA gene sequencing of the V4 hypervariable region (Illumina MiSeq) was carried out on 113 milk samples. Results: Multivariable linear regression analyses demonstrated no significant associations between maternal characteristics (maternal BMI [pre-pregnancy, 3 months post-partum], glucose tolerance, mode of delivery and ethnicity) and microbiota alpha-diversity; however, pre-pregnancy BMI was associated with human milk beta-diversity (Bray-Curtis p=0.040). Women with a pre-pregnancy BMI >30 kg/m2 (obese) had a greater incidence of Bacteroidetes (incidence rate ratio [IRR]: 3.70 [95% CI: 1.61-8.48]) and a reduced incidence of Proteobacteria (0.62 [0.43-0.90]), compared to overweight women (BMI 25.0-29.9 kg/m2) as assessed by multivariable Poisson regression. Increased incidence of Gemella was observed among overweight (versus healthy) mothers with gestational diabetes (5.96 [1.85-19.21]) and obese (versus healthy) mothers with impaired glucose tolerance (4.04 [1.63-10.01]). An increased incidence of Brevundimonas (16.70 [5.99-46.57]) was found in the milk of women who underwent an unscheduled C-section versus vaginal delivery. Lastly, functional gene inference demonstrated that obesity was associated with increased abundance of genes encoding for the biosynthesis of secondary metabolites in milk (coefficient=0.00028, p=0.0070). Conclusions: Mother’s milk has a diverse microbiota of which its diversity and differential abundance appear associated with maternal body size, glucose tolerance status, mode of delivery, and ethnicity. Further research is warranted to determine whether this variability in the milk microbiota impacts colonization of the infant gut.


Sign in / Sign up

Export Citation Format

Share Document