scholarly journals Determining leaf nutrient concentrations in citrus trees using UAV imagery and machine learning

Author(s):  
Lucas Costa ◽  
Sudip Kunwar ◽  
Yiannis Ampatzidis ◽  
Ute Albrecht

AbstractNutrient assessment of plants, a key aspect of agricultural crop management and varietal development programs, traditionally is time demanding and labor-intensive. This study proposes a novel methodology to determine leaf nutrient concentrations of citrus trees by using unmanned aerial vehicle (UAV) multispectral imagery and artificial intelligence (AI). The study was conducted in four different citrus field trials, located in Highlands County and in Polk County, Florida, USA. In each location, trials contained either ‘Hamlin’ or ‘Valencia’ sweet orange scion grafted on more than 30 different rootstocks. Leaves were collected and analyzed in the laboratory to determine macro- and micronutrient concentration using traditional chemical methods. Spectral data from tree canopies were obtained in five different bands (red, green, blue, red edge and near-infrared wavelengths) using a UAV equipped with a multispectral camera. The estimation model was developed using a gradient boosting regression tree and evaluated using several metrics including mean absolute percentage error (MAPE), root mean square error, MAPE-coefficient of variance (CV) ratio and difference plot. This novel model determined macronutrients (nitrogen, phosphorus, potassium, magnesium, calcium and sulfur) with high precision (less than 9% and 17% average error for the ‘Hamlin’ and ‘Valencia’ trials, respectively) and micro-nutrients with moderate precision (less than 16% and 30% average error for ‘Hamlin’ and ‘Valencia’ trials, respectively). Overall, this UAV- and AI-based methodology was efficient to determine nutrient concentrations and generate nutrient maps in commercial citrus orchards and could be applied to other crop species.

2020 ◽  
Vol 3 (1) ◽  
pp. 51-61
Author(s):  
Syaharuddin ◽  
Abdul Adhiim Rizky ◽  
Lutfi Jauhari ◽  
Siti Fatimah ◽  
Wahyu Ningsih ◽  
...  

This research aims to analyse the acceleration of population growth based on gender in West Nusa Tenggara Province (NTB) using the Forecasting system by constructing the winter's method in the shape of the Multiple Forecasting System (G-MFS) based on Matlab by calculating the period indicator for accuracy to find time series data in the year 2020-2029. At the simulation stage, researchers used the population and gender ratio data in NTB Province in 2009-2019. The method used in conducting research is to use the winter's method. The evaluation of Forecasting results is done by calculating the average error value using the Mean Absolute Percentage Error (MAPE) method. From this study obtained the most optimal parameter value on male data namely ʌ, β and γ sequential values of 0.9, 0.5 and 0.9 while in female data, the value of ʌ, β and γ respectively, 0.2, 0.1 and 0.5. Then with the value of the parameter obtained MAPE value in male data of 1.7785% and in female data of 0.89034%.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 833
Author(s):  
Irene Mirandola ◽  
Guido A. Berti ◽  
Roberto Caracciolo ◽  
Seungro Lee ◽  
Naksoo Kim ◽  
...  

This research provides an insight on the performances of machine learning (ML)-based algorithms for the estimation of the energy consumption in metal forming processes and is applied to the radial-axial ring rolling process. To define the mutual influence between ring geometry, process settings, and ring rolling mill geometries with the resulting energy consumption, measured in terms of the force integral over the processing time (FIOT), FEM simulations have been implemented in the commercial SW Simufact Forming 15. A total of 380 finite element simulations with rings ranging from 650 mm < DF < 2000 mm have been implemented and constitute the bulk of the training and validation datasets. Both finite element simulation settings (input), as well as the FI (output), have been utilized for the training of eight machine learning models, implemented with Python scripts. The results allow defining that the Gradient Boosting (GB) method is the most reliable for the FIOT prediction in forming processes, being its maximum and average errors equal to 9.03% and 3.18%, respectively. The trained ML models have been also applied to own and literature experimental cases, showing a maximum and average error equal to 8.00% and 5.70%, respectively, thus proving once again its reliability.


2019 ◽  
Vol 27 (2) ◽  
pp. 147-155
Author(s):  
Reisha D Peters ◽  
Scott D Noble

Spectral differences between aqueous solutions of NaCl and KCl have received minimal attention in previous research due to strong similarities between the two salts and the lack of motivation to differentiate between them. Correlations between salinity and absorbance have been developed previously with varying degrees of linearity but have not been tested to saturation. This work will demonstrate that correlating spectral measurements and the concentration of NaCl and KCl in water can be extended up to the saturation point of both salts and that solutions of these salts with unknown concentrations can be distinguished. Spectral data for samples of NaCl and KCl in single-salt solutions were collected up to saturation and correlations were developed for differentiating between solutions of the two species. These correlations were able to correctly identify the solution type for all solutions in the test set and estimate their concentrations with an average error of 0.9%.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 609
Author(s):  
Claudio Fredes ◽  
Constantino Valero ◽  
Belén Diezma ◽  
Marco Mora ◽  
José Naranjo-Torres ◽  
...  

Lipid extraction using the traditional, destructive Soxhlet method is not able to measure oil content (OC) on a single olive. As the color and near infrared spectrum are key parameters to build an oil estimation model (EM), this study grouped olives with similar color and NIR for building EM of oil content obtained by Soxhlet from a cluster of similar olives. The objective was to estimate OC of individual olives, based on clusters of similar color and NIR in two seasons. This study was performed with Arbequina olives in 2016 and 2017. The descriptor of the cluster consisted of the three color channels of c1c2c3 color model plus 11 reflectance points between 1710 and 1735 nm of each olive, normalized with the Z-score index. Clusters of similar color and NIR spectrum were formed with the k-means++ algorithm, leaving a sufficient number of olives to perform the Soxhlet analysis of OC, as reference value of EM. The training of EM was based on Support Vector Machine. The test was performed with Leave One-Out Cross Validation in different training-testing combinations. The best EM predicted the OC with 6 and 13% deviation with respect to the real value when one season was tested with itself and with another season, respectively. The use of clustering in EM is discussed.


2021 ◽  
Author(s):  
Jamal Ahmadov

Abstract The Tuscaloosa Marine Shale (TMS) formation is a clay- and liquid-rich emerging shale play across central Louisiana and southwest Mississippi with recoverable resources of 1.5 billion barrels of oil and 4.6 trillion cubic feet of gas. The formation poses numerous challenges due to its high average clay content (50 wt%) and rapidly changing mineralogy, making the selection of fracturing candidates a difficult task. While brittleness plays an important role in screening potential intervals for hydraulic fracturing, typical brittleness estimation methods require the use of geomechanical and mineralogical properties from costly laboratory tests. Machine Learning (ML) can be employed to generate synthetic brittleness logs and therefore, may serve as an inexpensive and fast alternative to the current techniques. In this paper, we propose the use of machine learning to predict the brittleness index of Tuscaloosa Marine Shale from conventional well logs. We trained ML models on a dataset containing conventional and brittleness index logs from 8 wells. The latter were estimated either from geomechanical logs or log-derived mineralogy. Moreover, to ensure mechanical data reliability, dynamic-to-static conversion ratios were applied to Young's modulus and Poisson's ratio. The predictor features included neutron porosity, density and compressional slowness logs to account for the petrophysical and mineralogical character of TMS. The brittleness index was predicted using algorithms such as Linear, Ridge and Lasso Regression, K-Nearest Neighbors, Support Vector Machine (SVM), Decision Tree, Random Forest, AdaBoost and Gradient Boosting. Models were shortlisted based on the Root Mean Square Error (RMSE) value and fine-tuned using the Grid Search method with a specific set of hyperparameters for each model. Overall, Gradient Boosting and Random Forest outperformed other algorithms and showed an average error reduction of 5 %, a normalized RMSE of 0.06 and a R-squared value of 0.89. The Gradient Boosting was chosen to evaluate the test set and successfully predicted the brittleness index with a normalized RMSE of 0.07 and R-squared value of 0.83. This paper presents the practical use of machine learning to evaluate brittleness in a cost and time effective manner and can further provide valuable insights into the optimization of completion in TMS. The proposed ML model can be used as a tool for initial screening of fracturing candidates and selection of fracturing intervals in other clay-rich and heterogeneous shale formations.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Osama Siddig ◽  
Ahmed Farid Ibrahim ◽  
Salaheldin Elkatatny

Unconventional resources have recently gained a lot of attention, and as a consequence, there has been an increase in research interest in predicting total organic carbon (TOC) as a crucial quality indicator. TOC is commonly measured experimentally; however, due to sampling restrictions, obtaining continuous data on TOC is difficult. Therefore, different empirical correlations for TOC have been presented. However, there are concerns about the generalization and accuracy of these correlations. In this paper, different machine learning (ML) techniques were utilized to develop models that predict TOC from well logs, including formation resistivity (FR), spontaneous potential (SP), sonic transit time (Δt), bulk density (RHOB), neutron porosity (CNP), gamma ray (GR), and spectrum logs of thorium (Th), uranium (Ur), and potassium (K). Over 1250 data points from the Devonian Duvernay shale were utilized to create and validate the model. These datasets were obtained from three wells; the first was used to train the models, while the data sets from the other two wells were utilized to test and validate them. Support vector machine (SVM), random forest (RF), and decision tree (DT) were the ML approaches tested, and their predictions were contrasted with three empirical correlations. Various AI methods’ parameters were tested to assure the best possible accuracy in terms of correlation coefficient (R) and average absolute percentage error (AAPE) between the actual and predicted TOC. The three ML methods yielded good matches; however, the RF-based model has the best performance. The RF model was able to predict the TOC for the different datasets with R values range between 0.93 and 0.99 and AAPE values less than 14%. In terms of average error, the ML-based models outperformed the other three empirical correlations. This study shows the capability and robustness of ML models to predict the total organic carbon from readily available logging data without the need for core analysis or additional well interventions.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4772 ◽  
Author(s):  
Kaizhi Liang ◽  
Zhaosheng Zhang ◽  
Peng Liu ◽  
Zhenpo Wang ◽  
Shangfeng Jiang

Accurate state-of-health (SOH) estimation for battery packs in electric vehicles (EVs) plays a pivotal role in preventing battery fault occurrence and extending their service life. In this paper, a novel internal ohmic resistance estimation method is proposed by combining electric circuit models and data-driven algorithms. Firstly, an improved recursive least squares (RLS) is used to estimate the internal ohmic resistance. Then, an automatic outlier identification method is presented to filter out the abnormal ohmic resistance estimated under different temperatures. Finally, the ohmic resistance estimation model is established based on the Extreme Gradient Boosting (XGBoost) regression algorithm and inputs of temperature and driving distance. The proposed model is examined based on test datasets. The root mean square errors (RMSEs) are less than 4 mΩ while the mean absolute percentage errors (MAPEs) are less than 6%. The results show that the proposed method is feasible and accurate, and can be implemented in real-world EVs.


Sign in / Sign up

Export Citation Format

Share Document