Fabrication and Electrical Characterization of Heterojunction Mn-Doped GaN Nanowire Diodes on n-Si Substrates (GaN:Mn NW/n-Si)

2009 ◽  
Vol 38 (4) ◽  
pp. 505-510 ◽  
Author(s):  
Tae-Hong Kim ◽  
Chan-Oh Jang ◽  
Han-Kyu Seong ◽  
Heon-Jin Choi ◽  
Sang-Kwon Lee
1991 ◽  
Vol 235 ◽  
Author(s):  
Ying Wu ◽  
W. Savin ◽  
T. Fink ◽  
N. M. Ravindra ◽  
R. T. Lareau ◽  
...  

ABSTRACTExperimental analysis and simulation of the formation and electrical characterization of TiSi2/+/p-Si shallow junctions are presented here. The formation of shallow n+-p junction, by ion implantation of As through Ti films evaporated on p-Si substrates followed by Rapid Thermal Annealing (RTA) and conventional furnace annealing has been performed in these experiments. Structural techniques such as Secondary Ion Mass Spec-troscopy (SIMS) and Rutherford Backscattering (RBS) experiments have been employed to characterize these devices. RUMP simulations were used to analyze and interpret the RBS data. Current-voltage characteristics have been simulated using PISCES simulator.


2018 ◽  
Vol 57 (1) ◽  
pp. 72-81 ◽  
Author(s):  
V.N. Popok ◽  
T.S. Aunsborg ◽  
R.H. Godiksen ◽  
P.K. Kristensen ◽  
R.R. Juluri ◽  
...  

Abstract Results on structural, compositional, optical and electrical characterization of MOVPE grown AlGaN/GaN heterostructures with focus on understanding how the AlN buffer synthesis affects the top films are reported. The study demonstrates very good correlation between different methods providing a platform for reliable estimation of crystalline quality of the AlGaN/GaN structures and related to that electrical performance which is found to be significantly affected by threading dislocations (TD): higher TD density reduces the electron mobility while the charge carrier concentration is found to be largely unchanged. The attempt to vary the ammonia flow during the AlN synthesis is found not to affect the film composition and dislocation densities in the following heterostructures. An unusual phenomenon of considerable diffusion of Ga from the GaN film into the AlN buffer is found in all samples under the study. The obtained results are an important step in optimization of AlGaN/GaN growth towards the formation of good quality HEMT structures on sapphire and transfer of technology to Si substrates by providing clear understanding of the role of synthesis parameter on structure and composition of the films.


1989 ◽  
Vol 162 ◽  
Author(s):  
B. Molnar ◽  
G. Kelner

ABSTRACTThis paper re-examines the electrical characterization of thin layers of cubic SiC, grown on (100) Si substrates. The resistivity and Hall coefficient for undoped SiC layers were measured between 10 K and 500 K. Electron spin resonance (ESR) and secondary ion mass spectrometry (SIMS) were used to identify and determine the nitrogen concentrations, which were higher than 1017/cm3. In all the samples examined the Hall measurements indicated impurity band conduction. Therefore, the temperature dependence of the resistivity has been used to derive an activation energy el. The value of el found to be in the range of 0.032–0.025 eV. The observed decrease in activation energy has been correlated with an increase in nitrogen concentration. The presence of substantial nitrogen leads to impurity band conduction and it is the most likely reason for the conflicting values reported for the dominant donor ionization energy by Hall and PL measurements.


2002 ◽  
Vol 46 (7) ◽  
pp. 991-995 ◽  
Author(s):  
Alok Sareen ◽  
Ann-Chatrin Lindgren ◽  
Per Lundgren ◽  
Stefan Bengtsson

1986 ◽  
Vol 67 ◽  
Author(s):  
M. Abdul Awal ◽  
El Hang Lee ◽  
G. L. Koos ◽  
E. Y. Chan ◽  
G. K. Celler ◽  
...  

ABSTRACTWe report some results on the chemical, structural and electrical characterization of Ge and GaAs films, grown on Si (100) substrates by electron-beam evaporation and MOCVD, respectively. Good quality Ge films have been obtained at 700°C substrate temperature at a growth rate of 5 nm/sec in 5 × 10−7 torr. Similarly, good GaAs films were obtained at 650°C and at 0.3 nm/sec. RBS data for GaAs films (1.1 μm) show Xmin approaching 3.5%, and Ge films (1.5 μm) around 3.6%. Photoluminescence of the same films show peaks around 852 nm with FWHM of 14 meV. Cross-sectional TEM and etching show a near-exponential decrease in defect density away from the Ge/Si interface. Detailed characterization results of the S-R, I-V, C-V, and X-ray studies are also described.


2015 ◽  
Vol 33 (4) ◽  
pp. 669-676 ◽  
Author(s):  
Piotr Firek ◽  
Michał Wáskiewicz ◽  
Bartłomiej Stonio ◽  
Jan Szmidt

AbstractThis work presents the investigations of AlN thin films deposited on Si substrates by means of magnetron sputtering. Nine different sputtering processes were performed. Based on obtained results, the tenth process was prepared and performed (for future ISFET structures manufacturing). Round aluminum (Al) electrodes were evaporated on the top of deposited layers. The MIS capacitor structures enabled a subsequent electrical characterization of the AlN films by means of current-voltage (I-V) and capacitance-voltage (C-V) measurements. Based on these results, the main parameters of investigated layers were obtained. Moreover, the paper describes the technology of fabrication and electrical characterization of ISFET transistors and possibility of their application as ion sensors.


1999 ◽  
Vol 567 ◽  
Author(s):  
E. M. Dons ◽  
C. S. Skowronski ◽  
K. R. Farmer

ABSTRACTWe report the electrical characterization of a direct tunneling diode structure that incorporates a multilayer dielectric. The dielectric consists of a stack of two thermally grown, ultrathin SiO2 layers, each ∼3.5 rin thick, separated by a deposited, continuous, undoped, ultrathin nanocrystalline Si layer ∼5.0 nm thick. Electrical measurements of this structure are reported for both n-type and p-type Si substrates. We find that the room temperature transport through this structure is accounted for by describing the intermediate Si layer as a quantum well with a continuum of states, and by otherwise assuming bulk properties for the ultrathin layers, such as the existence of a bandgap in the Si well and the usual Si-SiO2 interface potential barrier height at all interfaces. This structure is expected to be useful as the active dielectric in nonvolatile memory devices.


Sign in / Sign up

Export Citation Format

Share Document