scholarly journals Development of a potential vortex-hazard index to predict cruise-level wake turbulence encounters

Sadhana ◽  
2019 ◽  
Vol 44 (4) ◽  
Author(s):  
J Saravanakumar ◽  
C Arshad Shameem ◽  
T N Venkatesh
2020 ◽  
Vol 12 (1) ◽  
pp. 568-579
Author(s):  
Liping Mo ◽  
Yongzhang Zhou ◽  
Gnanachandrasamy Gopalakrishnana ◽  
Xingyuan Li

AbstractSihui city (South China) is much affected by nasopharyngeal carcinoma (NPC). To investigate the relationships between the toxic metals in soil and NPC incidence in Sihui, 119 surface soil samples were collected from agricultural fields and analyzed. The soil As–Cr contents in Longjiang (high-incidence area) are significantly lower than those in Weizheng and Jianglin (low-incidence areas), whereas the soil Pb content in Longjiang is significantly higher than that in Weizheng. The Nemerow pollution indices (PIN) of soils decrease in the order of Jianglin > Weizheng > Longjiang. The enrichment factor (EF) of Cd indicates that the Cd enrichment is contributed by human activities. Potential toxic metal-related ecological risk values decrease in the order of Jianglin > Weizheng > Longjiang. The mean hazard index (HI) value of Longjiang was lower than those of Weizheng and Jianglin. There are no adverse noncarcinogenic health effects of soil toxic metals to adults in the study areas. Carcinogenic risks of As and Cr via ingestion and dermal contact and total carcinogenic risk are within the warning range, from 10−6 to 10−4. Hence, we suggest that toxic metals in the soil may not be major geochemical carcinogenic factors of high NPC incidence in Sihui.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdur Rahman ◽  
N. C. Mondal ◽  
K. K. Tiwari

AbstractAn increased nitrate (NO3−) concentration in groundwater has been a rising issue on a global scale in recent years. Different consumption mechanisms clearly illustrate the adverse effects on human health. The goal of this present study is to assess the natural and anthropogenic NO3− concentrations in groundwater in a semi arid area of Rajasthan and its related risks to human health in the different groups of ages such as children, males, and females. We have found that most of the samples (n = 90) were influenced by anthropogenic activities. The background level of NO3− had been estimated as 7.2 mg/L using a probabilistic approach. About 93% of nitrate samples exceeded the background limit, while 28% of the samples were beyond the permissible limit of 45 mg/L as per the BIS limits. The results show that the oral exposure of nitrate was very high as compare to dermal contact. With regard to the non-carcinogenic health risk, the total Hazard Index (HITotal) values of groundwater nitrate were an average of 0.895 for males, 1.058 for females, and 1.214 for children. The nitrate health risk assessment shows that about 38%, 46%, and 49% of the samples constitute the non-carcinogenic health risk to males, females, and children, respectively. Children were found to be more prone to health risks due to the potential exposure to groundwater nitrate.


2020 ◽  
Vol 5 (1) ◽  
pp. 166-175
Author(s):  
Fatima Haque ◽  
Yi Wai Chiang ◽  
Rafael M. Santos

AbstractCalcium- and magnesium-rich alkaline silicate minerals, when applied to soil, can aid in carbon dioxide sequestration via enhanced weathering. The weathering of these silicate minerals is also associated with the release of heavy metals such as Ni and Cr, depending on the composition of the parent rock, and also labile Si. This paper critically analyses the risk associated with the release of Ni, Cr, and Si from alkaline silicate minerals as a result of enhanced weathering to evaluate its potential to be applied as a soil amendment. Based on the available data in the literature, this study evaluates the soil contamination level and quantifies the risk these elements pose to human health as well as the environment. To assess these potential threat levels, the geoaccumulation index was applied, along with the method recommended by the US Environmental Protection Agency for health risk assessment. The main findings of this study indicate the potential release of Ni, Cr, and Si to exceed the soil quality guideline value. The geochemical index suggests that the analyzed samples are in the class 0–3 and represents sites that lie between uncontaminated zones to highly contaminated zones. The hazard index value for Ni and Cr is greater than unity, which suggests that Ni and Cr release poses a non-carcinogenic risk. The probability of labile Si concentration in the soil to exceed the critical value is found to be 75%.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1431
Author(s):  
David Ortega-Gaucin ◽  
Jesús A. Ceballos-Tavares ◽  
Alejandro Ordoñez Sánchez ◽  
Heidy V. Castellano-Bahena

Drought is one of the major threats to water and food security in many regions around the world. The present study focuses on the evaluation of agricultural drought risk from an integrated perspective, that is, emphasizing the combined role of hazard, exposure, and vulnerability to drought. For this purpose, we used the Mexican state of Zacatecas as a case study. This state is one of the most vulnerable to the adverse effects of agricultural drought in the country. The proposed method includes three stages: first, we analyzed the risk of agricultural drought at the municipal scale using the FAO Agricultural Stress Index System (ASIS) in its country version (Country-Level ASIS) and also determined a Drought Hazard Index (DHI). Subsequently, we conducted a municipal assessment of exposure and vulnerability to drought based on a set of socioeconomic and environmental indicators, which we combined using an analytical procedure to generate the Drought Exposure Index (DEI) and the Drought Vulnerability Index (DVI). Finally, we determined a Drought Risk Index (DRI) based on a weighted addition of the hazard, exposure, and vulnerability indices. Results showed that 32% of the state’s municipalities are at high and very high risk of agricultural drought; these municipalities are located mainly in the center and north of the state, where 75.8% of agriculture is rainfed, 63.6% of production units are located, and 67.4% of the state’s population depends on agricultural activity. These results are in general agreement with those obtained by other studies analyzing drought in the state of Zacatecas using different meteorological drought indices, and the results are also largely in line with official data on agricultural surfaces affected by drought in this state. The generated maps can help stakeholders and public policymakers to guide investments and actions aimed at reducing vulnerability to and risk of agricultural drought. The method described can also be applied to other Mexican states or adapted for use in other states or countries around the world.


Author(s):  
Agnes Ann Feemster ◽  
Melissa Augustino ◽  
Rosemary Duncan ◽  
Anand Khandoobhai ◽  
Meghan Rowcliffe

Abstract Disclaimer In an effort to expedite the publication of articles related to the COVID-19 pandemic, AJHP is posting these manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time. Purpose The purpose of this study was to identify potential failure points in a new chemotherapy preparation technology and to implement changes that prevent or minimize the consequences of those failures before they occur using the failure modes and effects analysis (FMEA) approach. Methods An FMEA was conducted by a team of medication safety pharmacists, oncology pharmacists and technicians, leadership from informatics, investigational drug, and medication safety services, and representatives from the technology vendor. Failure modes were scored using both Risk Priority Number (RPN) and Risk Hazard Index (RHI) scores. Results The chemotherapy preparation workflow was defined in a 41-step process with 16 failure modes. The RPN and RHI scores were identical for each failure mode because all failure modes were considered detectable. Five failure modes, all attributable to user error, were deemed to pose the highest risk. Mitigation strategies and system changes were identified for 2 failure modes, with subsequent system modifications resulting in reduced risk. Conclusion The FMEA was a useful tool for risk mitigation and workflow optimization prior to implementation of an intravenous compounding technology. The process of conducting this study served as a collaborative and proactive approach to reducing the potential for medication errors upon adoption of new technology into the chemotherapy preparation process.


Author(s):  
Vikas Kumar ◽  
Saurav Kumar

Seafood, one of the most important food commodities consumed worldwide, is considered a high-quality, healthy, and safe food option. However, marine ecosystems are the ultimate destination for a large group of chemicals, including contaminants of emerging concern, and seafood consumption is a major pathway of human exposure. With growing awareness of food safety and food quality, and increased demand for information on the risk of contaminants of emerging concern, there is a need to assess food safety issues related to harmful contaminants in seafood and ensure the safety of marine food resources. In this study, the risks of emerging compounds (endocrine disruptors, brominated flame retardants, pharmaceuticals and personal care products, and toxic elements) in fish and seafood were analyzed according to their PBT (persistence, bioaccumulation, toxicity) properties as well as in terms of their concentration levels in seafood. A hazard index (HI) was estimated for each compound by applying an artificial neural network (ANN) approach known as Self-Organizing-Maps. Subsequently, an integrated risk rank (IRI) was developed considering the values of HI and the concentrations of emerging compounds in seafood species gathered from the scientific literature. Current results identified HHCB, MeHg, NP, AHTN and PBDE209 as the top five highest ranked compounds present in seafood, according to the 50th percentile (mean) of the IRI. However, this ranking slightly changed when taking into account the 99th percentile of the IRI, showing toxic elements, methylmercury and inorganic arsenic, as having the highest risk. The outcome of this study identified the priority contaminants and should help in regulatory decision-making and scientific panels to design screening programs as well as to take the appropriate safety measures.


Author(s):  
Ken-ichi Funazaki ◽  
Nobuaki Tetsuka ◽  
Tadashi Tanuma

This paper reports on an experimental investigation of aerodynamic loss of a low-speed linear turbine cascade which is subjected to periodic wakes shed from moving bars of the wake generator. In this case, parameters related to the wake, such as wake passing frequency (wake Strouhal number) or wake turbulence characteristics, are varied to see how these wake-related parameters affect the local loss distribution or mass-averaged loss coefficient of the turbine cascade. Free-stream turbulence intensity is changed by use of a turbulence grid. In Part I of this paper a focus is placed on the measurements by use of a pneumatic five-hole yawmeter, which provides time-averaged stagnation pressure distributions downstream of the moving bars as well as of the turbine cascade. Spanwise distributions of wake-affected exit flow angle are also measured. From this study it is found that the wake passing greatly affects not only the profile loss but secondary loss of the linear cascade. Noticeable change in exit flow angle is also identified.


1987 ◽  
Vol 113 (2) ◽  
pp. 211-215
Author(s):  
Richard E. Ward ◽  
Ronald W. Eck ◽  
Abishai Polus
Keyword(s):  

1978 ◽  
Vol 12 (7) ◽  
pp. 799-802 ◽  
Author(s):  
Phillip J. Walsh ◽  
George G. Killough ◽  
Paul S. Rohwer

2021 ◽  
pp. 096032712199321
Author(s):  
M Charehsaz ◽  
S Helvacıoğlu ◽  
S Çetinkaya ◽  
R Demir ◽  
O Erdem ◽  
...  

In this study, the level of arsenic (As), lead (Pb) and cadmium (Cd) and also essential elements in beer samples consumed in Turkey were investigated using the inductively coupled plasma mass spectrometry (ICP-MS) method. The heavy metal-induced non-carcinogenic and carcinogenic risks were calculated. For essential elements, the calculated estimated daily intake of iron (Fe), copper (Cu), selenium (Se) and cobalt (Co) from beer consumption were compared with their toxicity reference values. Tukey post-hoc test showed that As was found at a significantly higher level when compared to Pb. Also, a significant correlation was found between As level and alcohol by volume percent. All samples had a hazard quotient and hazard index <1, indicating no non-carcinogenic risk from exposure to single or multiple heavy metals. Some samples exceeded the threshold limit of acceptable cancer risk for As in the high beer consumer group. This assessment showed that in addition to health implications based on the alcohol content of beer, there might be a carcinogenic risk associated with the heavy metals content of these beverages.


Sign in / Sign up

Export Citation Format

Share Document