Chromium(VI) adsorption onto boehmite nanoparticles obtained by cost effective “green” synthesis

Author(s):  
M. Milanović ◽  
I. Stijepović ◽  
Z. Obrenović ◽  
D. Kukić ◽  
V. Vasić ◽  
...  
2020 ◽  
Vol 26 (40) ◽  
pp. 5188-5204
Author(s):  
Uzair Nagra ◽  
Maryam Shabbir ◽  
Muhammad Zaman ◽  
Asif Mahmood ◽  
Kashif Barkat

Nanosized particles, with a size of less than 100 nm, have a wide variety of applications in various fields of nanotechnology and biotechnology, especially in the pharmaceutical industry. Metal nanoparticles [MNPs] have been synthesized by different chemical and physical procedures. Still, the biological approach or green synthesis [phytosynthesis] is considered as a preferred method due to eco-friendliness, nontoxicity, and cost-effective production. Various plants and plant extracts have been used for the green synthesis of MNPs, including biofabrication of noble metals, metal oxides, and bimetallic combinations. Biomolecules and metabolites present in plant extracts cause the reduction of metal ions into nanosized particles by one-step preparation methods. MNPs have remarkable attractiveness in biomedical applications for their use as potential antioxidant, anticancer and antibacterial agents. The present review offers a comprehensive aspect of MNPs production via top-to-bottom and bottom-to-top approach with considerable emphasis on green technology and their possible biomedical applications. The critical parameters governing the MNPs formation by plant-based synthesis are also highlighted in this review.


2018 ◽  
Vol 9 (1) ◽  
pp. 101-108 ◽  
Author(s):  
Shubhangi J. Mane-Gavade ◽  
Sandip R. Sabale ◽  
Xiao-Ying Yu ◽  
Gurunath H. Nikam ◽  
Bhaskar V. Tamhankar

Introduction: Herein we report the green synthesis and characterization of silverreduced graphene oxide nanocomposites (Ag-rGO) using Acacia nilotica gum for the first time. Experimental: We demonstrate the Hg2+ ions sensing ability of the Ag-rGO nanocomposites form aqueous medium. The developed colorimetric sensor method is simple, fast and selective for the detection of Hg2+ ions in aqueous media in presence of other associated ions. A significant color change was noticed with naked eye upon Hg2+ addition. The color change was not observed for cations including Sr2+, Ni2+, Cd2+, Pb2+, Mg2+, Ca2+, Fe2+, Ba2+ and Mn2+indicating that only Hg2+ shows a strong interaction with Ag-rGO nanocomposites. Under the most suitable condition, the calibration plot (A0-A) against concentration of Hg2+ was linear in the range of 0.1-1.0 ppm with a correlation coefficient (R2) value 0.9998. Results & Conclusion The concentration of Hg2+ was quantitatively determined with the Limit of Detection (LOD) of 0.85 ppm. Also, this method shows excellent selectivity towards Hg2+ over nine other cations tested. Moreover, the method offers a new cost effective, rapid and simple approach for the detection of Hg2+ in water samples.


RSC Advances ◽  
2021 ◽  
Vol 11 (43) ◽  
pp. 26683-26686
Author(s):  
Md. Mahiuddin ◽  
Bungo Ochiai

Lemon juice effectively served as a reducing and capping agent for an easy, cost-effective, and green synthesis of crystalline bismuth nanoparticles (BiNPs) in basic aqueous media.


2020 ◽  
Vol 36 (6) ◽  
pp. 1154-1160
Author(s):  
G. DEEPA ◽  
M. JEYARAJ ◽  
P. N. Magudeswaran

On account of industrialization and increasing population, the water bodies get polluted by means of degradable and non-degradable substances. In 21st century, it is necessary to maintain a healthy environment especially water bodies for the survival of not the aquatic animals but also for healthy human life. Recent advances suggest that the issues related to water quality could be resolved by using nanoparticles and nano-filtration membrane methods from the development of nanotechnology. In this research, attempt to remove heavy metals from Chithrapuzha River water at Cochin bar mouth (S1) and Fact barge jetty (S2) using Fe2O3 prepared via green synthesis using Egg albumin and Aloe vera. Our results provoke that, the synthesis of Fe2O3 nanoparticle is cost-effective and eco-friendly and also good in nano-regime. Results of filtration studies showed that Fe2O3 nanoparticles remove heavy metals from Chithrapuzha River water and also increases the DO content which helps the survival of aquatic life.


Author(s):  
Totka Dodevska ◽  
Dobrin Hadzhiev ◽  
Ivan Shterev ◽  
Yanna Lazarova

Recently, the development of eco-friendly, cost-effective and reliable methods for synthesis of metal nanoparticles has drawn a considerable attention. The so-called green synthesis, using mild reaction conditions and natural resources as plant extracts and microorganisms, has established as a convenient, sustainable, cheap and environmentally safe approach for synthesis of a wide range of nanomaterials. Over the past decade, biosynthesis is regarded as an important tool for reducing the harmful effects of traditional nanoparticle synthesis methods commonly used in laboratories and industry. This review emphasizes the significance of biosynthesized metal nanoparticles in the field of electrochemical sensing. There is increasing evidence that green synthesis of nanoparticles provides a new direction in designing of cost-effective, highly sensitive and selective electrode-catalysts applicable in food, clinical and environmental analysis. The article is based on 157 references and provided a detailed overview on the main approaches for green synthesis of metal nanoparticles and their applications in designing of electrochemical sensor devices. Important operational characteristics including sensitivity, dynamic range, limit of detection, as well as data on stability and reproducibility of sensors have also been covered. Keywords: biosynthesis; green synthesis; nanomaterials; nanotechnology; modified electrodes


2021 ◽  
Vol 9 ◽  
Author(s):  
Malihe Zeraati ◽  
Abbas Rahdar ◽  
Dora I. Medina ◽  
Ghasem Sargazi

In this study, novel nanostructures of aluminum base metal-organic framework (Al-MOF) samples were synthesized using a sustainable, non-toxic, and cost-effective green synthesis route. Satureja hortensis extract was used as an effective source of linker for the development of the Al-MOF structures. The Fourier-transformed infrared (FTIR) spectrum confirmed the presence of characterization bonds related to the Al-MOF nanostructures synthesized by the green synthesis route. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses revealed that the sample synthesized by Na2-CA was composed of multilayers, although it was agglomerated, but it had dispersed and occurred in spherical particles, indicating active organic matter. N2 adsorption/desorption isotherms demonstrated the significant porosity of the Al-MOF samples that facilitate the high potential of these nanostructures in medical applications. The anticancer treatment of Al-MOF samples was performed with different concentrations using the MTT standard method with untreated cancer cells for 24 and 48 h periods. The results exhibited the significant anticancer properties of Al-MOF samples developed in this study when compared with other MOF samples. Thus, the development of a novel Al-MOF and its application as a natural linker can influence the anticancer treatment of the samples. According to the results, the products developed in this study can be used in more applications such as biosensors, catalysts, and novel adsorbents.


Author(s):  
R. D. More

In this study preparation of MgO nanoparticles using Zingiber officinale (ginger) aqueous root extract by using green method. The green synthesis approaches are recognized by many scientists due to its cost effective, simple, eco-friendly. The stability and reduction of Mg+2 ions to MgO nanoparticles were characterized by UV-Visible spectroscopic analysis. From UV-Visible spectroscopy, higher band gap energy of 7.8 eV is obtained in the near visible region at the wavelength of 300 nm. The Zingiber officinale (ginger) root extract act as reducing agent for stabilization of particle size as well as medicinal value result showed a significant antibacterial activity against pathogenic bacteria, E.Coli.and S.aureus. The present investigation deals with the green synthesis of MgO nanoparticles and its antibacterial effect on selected bacteria.


Author(s):  
A Purwidyantri ◽  
B A Prabowo ◽  
M Karina ◽  
Y Srikandace ◽  
A Nuraditya ◽  
...  

Author(s):  
SUMATHI S ◽  
BANUPRIYA SJS ◽  
AKHILA V ◽  
PADMA PR

Objectives: The aim of the present study is a synthesis of zinc oxide nanoparticles (ZnONPs) by green and chemical method. The nanoparticles were tested for their antimicrobial, antibiofilm activity, biocompatibility, and hemolysis activity. Methods: We have synthesized ZnONPs both by green and chemical synthesis using the coprecipitation method. To understand the functional group, absorbance, crystalline nature, size, and shape of the synthesized particles, Fourier transform infrared (FTIR), ultraviolet–visible spectroscopy, X-ray diffraction, and scanning electron microscopy were done. Antibacterial activity was carried out using different bacterial strains. The cytotoxicity of synthesized nanoparticles was checked using MTT assay with Klebsiella pneumoniae. Antibiofilm activities of both synthesized nanoparticles were done using Staphylococcus aureus and to assess the toxicity of nanoparticles at the cellular level, hemolysis assay was performed. Results: The yield of nanoparticles in green synthesis was much higher when compared to chemical synthesis. Spectral results showed that the synthesized nanoparticles were ZnONPs. Antibacterial, antibiofilm, and hemolysis assay showed that green nanoparticles were more potent than chemical nanoparticles. Conclusion: Hence, green synthesis provides an advantage over chemical synthesis as it is cost effective, environmentally friendly, and easily scaled up for large-scale synthesis.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Muhammad Imran Din ◽  
Aneela Rani

Green protocols for the synthesis of nanoparticles have been attracting a lot of attention because they are eco-friendly, rapid, and cost-effective. Nickel and nickel oxide nanoparticles have been synthesized by green routes and characterized for impact of green chemistry on the properties and biological effects of nanoparticles in the last five years. Green synthesis, properties, and applications of nickel and nickel oxide nanoparticles have been reported in the literature. This review summarizes the synthesis of nickel and nickel oxide nanoparticles using different biological systems. This review also provides comparative overview of influence of chemical synthesis and green synthesis on structural properties of nickel and nickel oxide nanoparticles and their biological behavior. It concludes that green methods for synthesis of nickel and nickel oxide nanoparticles are better than chemical synthetic methods.


Sign in / Sign up

Export Citation Format

Share Document