Impact of salt-induced toxicity on growth and yield-potential of local wheat cultivars: oxidative stress and ion toxicity are among the major determinants of salt-tolerant capacity

Chemosphere ◽  
2017 ◽  
Vol 187 ◽  
pp. 385-394 ◽  
Author(s):  
Md. Nurealam Siddiqui ◽  
Mohammad Golam Mostofa ◽  
Mst. Mahmuda Akter ◽  
Ashish Kumar Srivastava ◽  
Md. Abu Sayed ◽  
...  
2017 ◽  
Vol 44 (12) ◽  
pp. 1194 ◽  
Author(s):  
Joanne Tilbrook ◽  
Rhiannon K. Schilling ◽  
Bettina Berger ◽  
Alexandre F. Garcia ◽  
Christine Trittermann ◽  
...  

Soil salinity can severely reduce crop growth and yield. Many studies have investigated salinity tolerance mechanisms in cereals using phenotypes that are relatively easy to measure. The majority of these studies measured the accumulation of shoot Na+ and the effect this has on plant growth. However, plant growth is reduced immediately after exposure to NaCl before Na+ accumulates to toxic concentrations in the shoot. In this study, nondestructive and destructive measurements are used to evaluate the responses of 24 predominately Australian barley (Hordeum vulgare L.) lines at 0, 150 and 250 mM NaCl. Considerable variation for shoot tolerance mechanisms not related to ion toxicity (shoot ion-independent tolerance) was found, with some lines being able to maintain substantial growth rates under salt stress, whereas others stopped growing. Hordeum vulgare spp. spontaneum accessions and barley landraces predominantly had the best shoot ion independent tolerance, although two commercial cultivars, Fathom and Skiff, also had high tolerance. The tolerance of cv. Fathom may be caused by a recent introgression from H. vulgare L. spp. spontaneum. This study shows that the most salt-tolerant barley lines are those that contain both shoot ion-independent tolerance and the ability to exclude Na+ from the shoot (and thus maintain high K+ : Na+ ratios).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nadeem Hussain ◽  
Abdul Ghaffar ◽  
Zafar Ullah Zafar ◽  
Muhammad Javed ◽  
Kausar Hussain Shah ◽  
...  

AbstractSalt tolerant wheat cultivars may be used as genetic resource for wheat breeding to ensure yield stability in future. The study was aimed to select salt tolerant cultivar(s) to identify novel source of salt tolerance in local wheat germplasm. Initially, 40 local wheat cultivars were screened at 150 mM NaCl stress at seedling stage. Selected salt-tolerant (three; S-24, LU-26S and Pasban-90) and salt-sensitive (four; MH-97, Kohistan-97, Inqilab-91 and Iqbal-2000) wheat cultivars were further evaluated using growth, yield, biochemical and physiological attributes. Growth and yield of selected cultivars were reduced under salt stress due to decline in plant water status, limited uptake of macronutrients (N, P and K), reduced K+/Na+ ratio, photosynthetic pigments and quantum yield of PSII. Wheat plants tried to acclimate salt stress by osmotic adjustment (accumulation of total soluble sugars, proline and free amino acids). Degree of salinity tolerance in cvs. S-24 and LU-26S found to be associated with maintenance of K+/Na+ ratio, osmo-protectant and photosynthetic activity and can be used as donor for salt tolerance in wheat breeding program at least in Pakistan. These cultivars can be further characterized using molecular techniques to identify QTLs/genes for salt exclusion, osmo-protectant and photosynthetic activity for molecular breeding.


2018 ◽  
Vol 11 (4) ◽  
pp. 1913-1926
Author(s):  
Hamed Azad ◽  
Gholam Abbas Akbar ◽  
Gholam Ali Akbari ◽  
Elias Soltani

Simulation models of crops are used for experimental and complementary research on field projects. These models are also useful for interpreting the results and examining agricultural systems under different environmental and management conditions. The aim of this study was to describe a model for wheat (SSM), guarantee wheat cultivars in a genetic discussion in the Pakdasht environment, and present the results of its evaluation. The model of phenological stages, growth, and aging of leaf area and the production and distribution of dry matter simulates water function and balance. The SSM model simulates the growth stages of the plant in response to environmental factors, heat, and the ability to access solar radiation. In order to evaluate the SSM model, field experiment data of two wheat cultivars—SW and Pishtaz—were used as factorial, based on a randomized complete block design with four replications. Subsequently, the parameters were evaluated, the model was tested in accordance with independent data, and the results indicate its acceptance for the main aspects of crops compared to the observed experiments—for example, for SW, we have 1830 GDD to 2310 GDD from pollination to treatment and extinction factor in Pishtaz is 0.71 and PLAPOW coefficient is 1.6484±.063, which can finally be used to simulate these figures.


2008 ◽  
Vol 147 (2) ◽  
pp. 127-140 ◽  
Author(s):  
E. DICKIN ◽  
S. BENNETT ◽  
D. WRIGHT

SUMMARYWinter waterlogging is expected to become an increasingly serious problem due to climate change. It is therefore important to find whether differences in tolerance to waterlogging exist between wheat cultivars grown in the UK. Screening experiments were conducted outdoors and in a glasshouse to investigate the yield response to waterlogging and waterlogging tolerance at the seedling stage. The experiments suggested that differences in tolerance existed between cultivars, in the form of digression of some cultivars from their expected yield in the outdoor experiment and a significant interaction between cultivar and waterlogging for shoot and root dry weight in the seedling experiment. Cultivars that appeared to differ in their responses to waterlogging were further tested in a field experiment over two seasons and in a second glasshouse seedling experiment. However, there was no significant relationship between measurements taken at the seedling stage and grain yield at maturity; also the field experiment did not provide compelling evidence of differences in tolerance. Cultivars with the largest yield suffered the largest decrease due to waterlogging, and the yield of the cultivar with the lowest yield potential was unaffected. All cultivars showed considerable ability to compensate for winter waterlogging damage by vigorous spring growth. All cultivars produced nodal roots in response to waterlogging, and these displayed evidence of aerenchyma tissue by penetrating below the water level, but no cultivar was any better in this respect than any other. The results of these experiments suggest that screening for waterlogging tolerance at the seedling stage is not representative of final yield. It is suggested that the lack of diversity for tolerance is a result of the inbred nature of UK wheat cultivars and that the overall good level of tolerance and ability to compensate has been selected for, either inadvertently, or as a result of selecting the best cultivars in UK conditions, where tolerance to waterlogging is a part of the general winter hardiness required.


Author(s):  
S Asif ◽  
Q Ali ◽  
A Malik

Wheat (Triticum aestivum L.) is an important cereal crop of the world. It is one of the staple foods for major portion of world population. There are various biotic and abiotic factors responsible for low production of wheat in our country. Among these factors, soil salinity is major problem playing an important role in soil degradation, thus consequently reducing wheat production and quality. This study was conducted to evaluate the effect of various salinity and heavy metal levels against three wheat cultivars fir salinity resistance. Three different varieties of wheat were screened against the salinity under controlled conditions in the laboratory of tissue culture, University of Lahore. Seeds of three wheat varieties (Anaj-2006, Faisalabad-2008 and Inqalab-91) were sown in seedling trays. NaCl and CuSO4 were applied as salinity and heavy metal treatment upon wheat cultivars. In order to evaluate, hazardous effects of salinity and heavy metal on wheat certain growth parameters were observed i.e. leaf length and width, leaf area, stem and root length, fresh and dry weight of leaf, stem and root, root shoot length ratio and photometry of leaf, stem and root was measured. Results depicts salinity and heavy metal application has negative correlation with growth parameters of wheat particularly combine application of NaCl and CuSo4 have led to impose major detrimental effects on wheat cultivars. Regarding varietal comparison, “Anaj-2006” proved to be comparatively better in context of less salt’s residual accumulation in leaf, stem and roots along with lower root to shoot length ratio thus exhibiting a strong genetic potential to keep surviving and maintain healthy growth. However, it was concluded that salinity and heavy metal have adversely affected growth and yield potential of “Faisalabad-2008”. So conclusively, there is dare need to screen out indigenous and exotic wheat germplasm available throughout the country for finding some suitable genetic resources having moderate to high resistance levels against salinity and heavy metal which can be further used for breeding purpose in varietal improvement program.


2021 ◽  
Vol 8 ◽  
Author(s):  
Muhammad Bilal Hafeez ◽  
Yasir Ramzan ◽  
Shahbaz Khan ◽  
Danish Ibrar ◽  
Saqib Bashir ◽  
...  

Field-based experiments were conducted during wheat cultivation seasons of 2017–2018 and 2018–2019 to minimize the impact of hidden hunger (micronutrient deficiencies) through agronomic biofortification of two wheat cultivars with zinc and iron. Two spring-planted bread wheat cultivars: Zincol-16 (Zn-efficient) and Anaj-17 (Zn-inefficient with high-yield potential) were treated with either zinc (10 kg/ha), iron (12 kg/ha), or their combination to study their effect on some growth attributes (plant height, tillers, and spike length, etc.,), productivity, and quality. No application of zinc and iron or their combinations served as the control. Maximum Zn and Fe contents of grains were improved by sole application of Zn and Fe, respectively. A higher concentration of Ca in grains was observed by the combined application of Zn and Fe. Starch contents were found maximum by sole application of Fe. Sole or combined application of Zn and Fe reduced wet gluten contents. Maximum proteins were recorded in Anaj-17 under control treatments. Zincol-16 produced maximum ionic concentration, starch contents, and wet gluten as compared to Anaj-17. Yield and growth attributes were also significantly (p < 0.05) improved by combined application as compared to the sole application of Zn or Fe. The combined application also produced the highest biological and grain yield with a maximum harvest index. Cultivar Anaj-17 was found more responsive regarding growth and yield attributes comparatively. The findings of the present study showed that the combined application of Zn and Fe produced good quality grains (more Zn, Fe, Ca, starch, and less gluten concentrations) with a maximum productivity of bread wheat cultivars.


1991 ◽  
Vol 18 (1) ◽  
pp. 53 ◽  
Author(s):  
PC Pheloung ◽  
KHM Siddique

Field experiments were conducted in the eastern wheat belt of Western Australia in a dry year with and without irrigation (1987) and in a wet year (1988), comparing three cultivars of wheat differing in height and yield potential. The aim of the study was to determine the contribution of remobilisable stem dry matter to grain dry matter under different water regimes in old and modern wheats. Stem non-structural carbohydrate was labelled with 14C 1 day after anthesis and the activity and weight of this pool and the grain was measured at 2, 18 and 58 days after anthesis. Gutha and Kulin, modern tall and semi-dwarf cultivars respectively, yielded higher than Gamenya, a tall older cultivar in all conditions, but the percentage reduction in yield under water stress was greater for the modern cultivars (41, 34 and 23%). In the grain of Gamenya, the increase in 14C activity after the initial labelling was highest under water stress. Generally, loss of 14C activity from the non-structural stem dry matter was less than the increase in grain activity under water stress but similar to or greater than grain activity increase under well watered conditions. Averaged over environments and cultivars, non-structural dry matter stored in the stem contributed at least 20% of the grain dry matter.


2016 ◽  
Vol 8 (1) ◽  
pp. 429-436 ◽  
Author(s):  
M. Kumar ◽  
A. Sarangi ◽  
D. K. Singh ◽  
A.R. Rao ◽  
S. Sudhishri

A field experiment with split-split plot design (SSPD) was conducted to study the response of two winter wheat (Triticumaestivum L.) cultivars (viz. salt tolerant cultivar KRL-1-4 and salt non-tolerant cultivar HD-2894) under saline irrigation regimes with and without foliar potassium fertilization on growth and grain yield of wheat during rabi 2011-12 and 2012-13. Potassium in the ratio of K+: Na+ (1: 10) was applied as foliar application during the heading stage of the crop. Results showed that the grain yield of KRL-1-4 and HD-2894 cultivars with foliar potassium fertilization at the heading stage increased by 6.5 to 22% and 3 to 15% during rabi 2011-2012, respectively under different saline irrigation regimes as compared to the control. Moreover, the results of rabi 2012-13 showed an increase in grain yield ranging from 4.5 to 20% for KRL-1-4 as compared to the control. Statistical analysis of grain yield parameter showed that the foliar potassium application in both varieties resulted in significant yield difference at 0.05 probability level as compared to the non-foliar application. Overall, it was observed that the foliar potassium fertilization increased the grain yield of both wheat cultivars, while the salt tolerant cultivar performed better than the salt non-tolerant cultivar under irrigated saline regimes.


Sign in / Sign up

Export Citation Format

Share Document