Study by ultrasound of the impact of technological parameters changes in the milk gelation process

2004 ◽  
Vol 63 (2) ◽  
pp. 229-236 ◽  
Author(s):  
Georges Nassar ◽  
Bertrand Nongaillard ◽  
Yolande Noël
Author(s):  
Юрий Зубарев ◽  
Yuriy Zubarev ◽  
Александр Приемышев ◽  
Alexsandr Priyomyshev

Tool materials used for polymeric composite blank machining, kinds of tool material wear arising at machining these blanks, and also the impact of technological parameters upon tool wear are considered. The obtained results allow estimating the potentialities of physical models at polymeric composite blanks cutting.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 560
Author(s):  
Luigi Formisano ◽  
Michele Ciriello ◽  
Christophe El-Nakhel ◽  
Marios C. Kyriacou ◽  
Youssef Rouphael

In the Italian culinary tradition, young and tender leaves of Genovese basil (Ocimum basilicum L.) are used to prepare pesto sauce, a tasty condiment that attracts the interest of the food processing industry. Like other leafy or aromatic vegetables, basil is harvested more than once during the crop cycle to maximize yield. However, the mechanical stress induced by successive cuts can affect crucial parameters associated with pesto processing (leaf/stem ratio, stem diameter, and dry matter). Our research accordingly aimed to evaluate the impact of successive harvests on three field-grown Genovese basil cultivars (“Aroma 2”, “Eleonora” and “Italiano Classico”) in terms of production, physiological behavior, and technological parameters. Between the first and second harvest, marketable fresh yield and shoot dry biomass increased by 148.4% and 172.9%, respectively; by contrast, the leaf-to-stem ratio decreased by 22.5%, while the dry matter content was unchanged. The increased fresh yield and shoot dry biomass at the second harvest derived from improved photosynthetic efficiency, which enabled higher net CO2 assimilation, Fv/Fm and transpiration as well as reduced stomatal resistance. Our findings suggest that, under the Mediterranean environment, “Italiano Classico” carries superior productive performance and optimal technological characteristics in line with industrial requirements. These promising results warrant further investigation of the impact successive harvests may have on the qualitative components of high-yielding basil genotypes with respect to consumer expectations of the final product.


2016 ◽  
Vol 7 (2) ◽  
pp. 86-92 ◽  
Author(s):  
Józef Kuczmaszewski ◽  
Ireneusz Zagórski ◽  
Piotr Zgórniak

Abstract This paper presents an overview of the state of knowledge on temperature measurement in the cutting area during magnesium alloy milling. Additionally, results of own research on chip temperature measurement during dry milling of magnesium alloys are included. Tested magnesium alloys are frequently used for manufacturing elements applied in the aerospace industry. The impact of technological parameters on the maximum chip temperature during milling is also analysed. This study is relevant due to the risk of chip ignition during the machining process.


2014 ◽  
Vol 59 (3) ◽  
pp. 1037-1040 ◽  
Author(s):  
I. Vasková ◽  
M. Hrubovčáková ◽  
J. Malik ◽  
Š. Eperješi

Abstract Ductile cast iron (GS) has noticed great development in last decades and its boom has no analogue in history humankind. Ductile iron has broaden the use of castings from cast iron into areas, which where exclusively domains for steel castings. Mainly by castings, which weight is very high, is the propensity to shrinkage creation even higher. Shrinkage creation influences mainly material, construction of casting, gating system and mould. Therefore, the main realized experiment was to ascertain the influence of technological parameters of furane mixture on shrinkage creation in castings from ductile iron. Together was poured 12 testing items in 3 moulds forto determine and compare the impact of various technological parameters forms the propensity for shrinkage in the casting of LGG.


2019 ◽  
Vol 140 ◽  
pp. 02004
Author(s):  
Aleksey Ignatov ◽  
Rustam Subkhankulov

Numerous studies in application of modern composite materials show that their advantages can be successfully implemented in manufacturing «smart» products. This study proposes an improved technological method of manufacturing multilayer environmentally friendly products with a variable cross section, which allows us to expand the possibilities of using modern polymer composite materials (PCM). The technology allows manufacturing products of the most complex geometric shapes, such as wind turbine blades. The aim of the study is the technological support of engineering production in the manufacture of multilayer products of variable cross section made from PCM. Scientific novelty consists in identifying the patterns of implementation and management of the manufacturing process of multilayer products of variable cross-section, and establishing the influence of structural and technological parameters of the manufacturing process on their operational characteristics. The relationship between the pressure of a hot directed air stream and the volume fraction of pores in the hardened material of a multilayer composite product with a variable cross section during layer-by-layer application is investigated. During the study, fundamental and applied principles of mechanical engineering technology, material resistance, adhesion theory, mathematical statistics tools and software were used to process the results of the experiment. Based on the results of laboratory studies, a methodology has been developed for effective prediction of pore content in the manufacturing of composite products. The introduction of the presented technology and the corresponding original methodology into production will reduce the complexity and energy costs of manufacturing composite products, improve their quality and reduce the impact of toxic components from composite materials on workers.


Author(s):  
Андрей Киричек ◽  
Andrey Kirichek ◽  
Дмитрий Соловьев ◽  
Dmitriy Solovyev ◽  
Александр Хандожко ◽  
...  

The problems of analyzing metallographic images and the method of their solution using modern software for the analysis of metallographic images are described. There is given an analysis of microstructure images as the main indicator of the surface layer quality by the example of studying the research results of strain wave hardening combinations and chemical-thermal treatment, in particular the influence of previous strain wave hardening and subsequent thermal and chemical- thermal treatment on the alloy steel microstructure or previous thermal and chemical- thermal treatment and subsequent strain wave hardening. On the basis of the analysis the effectiveness of strain wave hardening and chemical and thermal treatment is established.


2020 ◽  
Vol 17 (34) ◽  
pp. 769-781 ◽  
Author(s):  
Karina Shamilevna KHAIBULLINA ◽  
Grigory Yurievich KOROBOV ◽  
Aleksandr Viktorovich LEKOMTSEV

The problem of the formation of asphalt-resin-paraffin deposits (ARPD) in oil fields within the “well – bottom-hole formation zone” system is still relevant. To prevent the formation of ARPD in the “bottom-hole formation zone – well” system, the ARPD inhibitors must have high adsorption and low desorption properties concerning the rock. The composition of inhibitors often includes surfactants. Nonionic surfactants, namely, polyesters, are widely used to prevent the formation of ARPD. However, currently, little is known about inhibitors with a combined effect, for example, possessing depressor-dispersing properties for ARPD. This work aimed to develop a combined inhibitor possessing not only depressor-dispersing properties but also having good adsorption and desorption properties to the rock to prevent the formation of ARPD. The paper presents the research results on the development of an ARPD inhibitor, as well as the effects of determination of its depressor dispersing, inhibiting, and corrosive properties; the temperature of oil saturation with paraffin is determined as well. The studies of the ARPD inhibitor adsorption were carried out by the static and dynamic methods. In contrast, the process of the inhibitor desorption was studied by oil filtering through a saturated sample of the rock using a bulk model and core material. The impact of the fluid flow rate on the inhibitor desorption rate was studied. The technological parameters of the ARPD inhibitor solution injection into the bottom-hole formation zone of production wells were calculated. The developed composition has high inhibiting properties concerning the ARPD, depressor dispersing properties, low corrosive activity for a metal surface, and is capable of lowering the temperature of oil saturation with paraffin.


Author(s):  
V.V. Verenev

The aim of the work is to summarize the results of experimental-industrial and theoretical studies of dynamic processes in wide-strip hot rolling mills 1680, 1700, 2000 and 2500. We describe the methods of collecting, storing, identifying, visualizing and mathematical processing of large data arrays, which made it possible to establish new laws and correlations of technological parameters. New results related to the peculiarities of transient processes, their patterns and the use of the latter for the purpose of diagnosing technology and equipment condition are presented. Vibrodynamic processes are described when the strip is captured by the rollers. For the first time, a correlation between the maximum peak moment when the strip is captured and the static rolling moment on the 1680 mill is obtained and substantiated by measuring and statistical modeling. A new mathematical model of the roll line is developed, incorporating the equations of dynamic processes in gears and axles of the gearbox. For the first time, the dynamics of the formation of intercellular tensions in the process of sequential filling and release with a 6-cell band is shown. A complete mathematical model and a computer program for the dynamic interaction of six-group stands of a rolling strip have been developed. A new line of research has been proposed, which includes the search, substantiation and testing of new methods and methods for diagnosing the technical condition of rolling mills based on the use of transients and their parameters in various modes of equipment operation. Proposed and tested in industrial conditions at the mills 1680 and 1700-M are effective ways to reduce the impact loads during the period of the strip capture by the rollers.


Author(s):  
B.S. Moroz ◽  
M.G. Dudnik

The parameters of deformation degree at theoretical and experimental researches of cold backward extrusion processes of hollow glasses-type products are considered. The dependences of their relationship with the relative degree of deformation and the scale of their conformity are suggested. The published results of experimental and theoretical studies on the impact of technological parameters of the backward extrusion process of hollow products in the conditions of active friction forces to reduce the deformation force and stress-strain state of the billet are analyzed. Insuffi ciently studied features of the process and the possibility for expanding of the application fi eld of the backward extrusion method with the active action of friction forces are noted. The method for calculating of the deformation rate required to determine the current stress in the implementation of the hot backward extrusion process.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1941
Author(s):  
Aurel Tulcan ◽  
Mircea Dorin Vasilescu ◽  
Liliana Tulcan

The objective of this paper is to determine how the supporting structure in the DLP 3D printing process has influences on the characteristics of the flat and cylindrical surfaces. The part is printed by using the Light Control Digital (LCD) 3D printer technology. A Coordinate Measuring Machine (CMM) with contact probes is used for measuring the physical characteristics of the printed part. Two types of experiment were chosen by the authors to be made. The first part takes into consideration the influence of the density of the generated supports, at the bottom of the printed body on the characteristics of the flat surface. In parallel, it is studying the impact of support density on the dimension and quality of the surface. In the second part of the experiment, the influence of the printed supports dimension on the flatness, straightness and roundness of the printed elements were examined. It can be observed that both the numerical and dimensional optimum zones of the support structure for a prismatic element could be determined, according to two experiments carried out and the processing of the resulting data. Based on standardized data of flatness, straightness and roundness, it is possible to put in accord the values determined by measurement within the limits of standardized values.


Sign in / Sign up

Export Citation Format

Share Document