Cold atmospheric plasma discharge induced fast decontamination of a wide range of organic compounds suitable for environmental applications

2016 ◽  
Vol 9 ◽  
pp. 195-200 ◽  
Author(s):  
Bahareh Mohammadi ◽  
Ali Akbar Ashkarran
RSC Advances ◽  
2016 ◽  
Vol 6 (32) ◽  
pp. 26505-26513 ◽  
Author(s):  
D. B. Nguyen ◽  
W. G. Lee

N2< He < Ar: the order of energy efficiency for CHF3decomposition among these gas discharges.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1259
Author(s):  
Dayun Yan ◽  
Alisa Malyavko ◽  
Qihui Wang ◽  
Kostya (Ken) Ostrikov ◽  
Jonathan H. Sherman ◽  
...  

Cold atmospheric plasma (CAP) is a near-room-temperature, partially ionized gas composed of reactive neutral and charged species. CAP also generates physical factors, including ultraviolet (UV) radiation and thermal and electromagnetic (EM) effects. Studies over the past decade demonstrated that CAP could effectively induce death in a wide range of cell types, from mammalian to bacterial cells. Viruses can also be inactivated by a CAP treatment. The CAP-triggered cell-death types mainly include apoptosis, necrosis, and autophagy-associated cell death. Cell death and virus inactivation triggered by CAP are the foundation of the emerging medical applications of CAP, including cancer therapy, sterilization, and wound healing. Here, we systematically analyze the entire picture of multi-modal biological destruction by CAP treatment and their underlying mechanisms based on the latest discoveries particularly the physical effects on cancer cells.


2021 ◽  
Vol 75 (11) ◽  
Author(s):  
Amit Kumar ◽  
Nikola Škoro ◽  
Wolfgang Gernjak ◽  
Nevena Puač

Abstract Water bodies are being contaminated daily due to industrial, agricultural and domestic effluents. In the last decades, harmful organic micropollutants (OMPs) have been detected in surface and groundwater at low concentrations due to the discharge of untreated effluent in natural water bodies. As a consequence, aquatic life and public health are endangered. Unfortunately, traditional water treatment methods are ineffective in the degradation of most OMPs. In recent years, advanced oxidation processes (AOPs) techniques have received extensive attention for the mineralization of OMPs in water in order to avoid serious environmental problems. Cold atmospheric plasma discharge-based AOPs have been proven a promising technology for the degradation of non-biodegradable organic substances like OMPs. This paper reviews a wide range of cold atmospheric plasma sources with their reactor configurations used for the degradation of OMPs (such as organic dyes, pharmaceuticals, and pesticides) in wastewater. The role of plasma and treatment parameters (e.g. input power, voltage, working gas, treatment time, OMPs concentrations, etc.) on the oxidation of various OMPs are discussed. Furthermore, the degradation kinetics, intermediates compounds formed by plasma, and the synergetic effect of plasma in combination with a catalyst are also reported in this review. GraphicAbstract


2013 ◽  
Vol 18 ◽  
pp. 649-656 ◽  
Author(s):  
C.A. Aggelopoulos ◽  
C.D. Tsakiroglou ◽  
S. Ognier ◽  
S. Cavadias

Author(s):  
Zhitong Chen ◽  
Richard Wirz

The recent pandemic has greatly stressed supply chains, treatment modalities, and medical resources. Cold atmospheric plasma (CAP) has been used for a wide range of applications in biomedical engineering due to its many components including electrons, charged particles, reactive oxygen species (ROS), reactive nitrogen species (RNS), free radicals, ultraviolet (UV) photons, molecules, electromagnetic fields, physical forces, and electric fields. In this manuscript, we develop CAP devices for COVID-19. Our manuscript indicates the advantages of highlydeployable CAP devices for both sanitation and treatment, without the need for supply chains of special consumables such as hand sanitizers and the like. We hope that this timely research will help engage the broader community of engineers that wish to help the medical community with this pandemic and to prevent and treat future outbreaks.


2020 ◽  
Vol 21 (8) ◽  
pp. 2932 ◽  
Author(s):  
Dušan Braný ◽  
Dana Dvorská ◽  
Erika Halašová ◽  
Henrieta Škovierová

Cold atmospheric plasma use in clinical studies is mainly limited to the treatment of chronic wounds, but its application in a wide range of medical fields is now the goal of many analyses. It is therefore likely that its application spectrum will be expanded in the future. Cold atmospheric plasma has been shown to reduce microbial load without any known significant negative effects on healthy tissues, and this should enhance its possible application to any microbial infection site. It has also been shown to have anti-tumour effects. In addition, it acts proliferatively on stem cells and other cultivated cells, and the highly increased nitric oxide levels have a very important effect on this proliferation. Cold atmospheric plasma use may also have a beneficial effect on immunotherapy in cancer patients. Finally, it is possible that the use of plasma devices will not remain limited to surface structures, because current endeavours to develop sufficiently miniature microplasma devices could very likely lead to its application in subcutaneous and internal structures. This study summarises the available literature on cold plasma action mechanisms and analyses of its current in vivo and in vitro use, primarily in the fields of regenerative and dental medicine and oncology.


Author(s):  
N. A. Bulychev

In this paper, the plasma discharge in a high-pressure fluid stream in order to produce gaseous hydrogen was studied. Methods and equipment have been developed for the excitation of a plasma discharge in a stream of liquid medium. The fluid flow under excessive pressure is directed to a hydrodynamic emitter located at the reactor inlet where a supersonic two-phase vapor-liquid flow under reduced pressure is formed in the liquid due to the pressure drop and decrease in the flow enthalpy. Electrodes are located in the reactor where an electric field is created using an external power source (the strength of the field exceeds the breakdown threshold of this two-phase medium) leading to theinitiation of a low-temperature glow quasi-stationary plasma discharge.A theoretical estimation of the parameters of this type of discharge has been carried out. It is shown that the lowtemperature plasma initiated under the flow conditions of a liquid-phase medium in the discharge gap between the electrodes can effectively decompose the hydrogen-containing molecules of organic compounds in a liquid with the formation of gaseous products where the content of hydrogen is more than 90%. In the process simulation, theoretical calculations of the voltage and discharge current were also made which are in good agreement with the experimental data. The reaction unit used in the experiments was of a volume of 50 ml and reaction capacity appeared to be about 1.5 liters of hydrogen per minute when using a mixture of oxygen-containing organic compounds as a raw material. During their decomposition in plasma, solid-phase products are also formed in insignificant amounts: carbon nanoparticles and oxide nanoparticles of discharge electrode materials.


2018 ◽  
Vol 18 (6) ◽  
pp. 784-804 ◽  
Author(s):  
Georg Bauer

Background: Application of cold atmospheric plasma to medium generates “plasma-activated medium” that induces apoptosis selectively in tumor cells and that has an antitumor effect in vivo. The underlying mechanisms are not well understood. Objective: Elucidation of potential chemical interactions within plasma-activated medium and of reactions of medium components with specific target structures of tumor cells should allow to define the active principle in plasma activated medium. Methods: Established knowledge of intercellular apoptosis-inducing reactive oxygen/nitrogen species-dependent signaling and its control by membrane-associated catalase and SOD was reviewed. Model experiments using extracellular singlet oxygen were analyzed with respect to catalase inactivation and their relevance for the antitumor action of cold atmospheric plasma. Potential interactions of this tumor cell-specific control system with components of plasma-activated medium or its reaction products were discussed within the scope of the reviewed signaling principles. Results: None of the long-lived species found in plasma-activated medium, such as nitrite and H2O2, nor OCl- or .NO seemed to have the potential to interfere with catalase-dependent control of apoptosis-inducing signaling of tumor cells when acting alone. However, the combination of H2O2 and nitrite might generate peroxynitrite. The protonation of peroxnitrite to peroxynitrous acid allows for the generation of hydroxyl radicals that react with H2O2, leading to the formation of hydroperoxide radicals. These allow for singlet oxygen generation and inactivation of membrane-associated catalase through an autoamplificatory mechanism, followed by intercellular apoptosis-inducing signaling. Conclusion: Nitrite and H2O2 in plasma-activated medium establish singlet oxygen-dependent interference selectively with the control system of tumor cells.


2018 ◽  
Vol 18 (6) ◽  
pp. 769-775 ◽  
Author(s):  
Dayun Yan ◽  
Jonathan H. Sherman ◽  
Michael Keidar

Background: Over the past five years, the cold atmospheric plasma-activated solutions (PAS) have shown their promissing application in cancer treatment. Similar as the common direct cold plasma treatment, PAS shows a selective anti-cancer capacity in vitro and in vivo. However, different from the direct cold atmospheric plasma (CAP) treatment, PAS can be stored for a long time and can be used without dependence on a CAP device. The research on PAS is gradually becoming a hot topic in plasma medicine. Objectives: In this review, we gave a concise but comprehensive summary on key topics about PAS including the development, current status, as well as the main conclusions about the anti-cancer mechanism achieved in past years. The approaches to make strong and stable PAS are also summarized.


Sign in / Sign up

Export Citation Format

Share Document