scholarly journals Cold Atmospheric Plasma for COVID-19

Author(s):  
Zhitong Chen ◽  
Richard Wirz

The recent pandemic has greatly stressed supply chains, treatment modalities, and medical resources. Cold atmospheric plasma (CAP) has been used for a wide range of applications in biomedical engineering due to its many components including electrons, charged particles, reactive oxygen species (ROS), reactive nitrogen species (RNS), free radicals, ultraviolet (UV) photons, molecules, electromagnetic fields, physical forces, and electric fields. In this manuscript, we develop CAP devices for COVID-19. Our manuscript indicates the advantages of highlydeployable CAP devices for both sanitation and treatment, without the need for supply chains of special consumables such as hand sanitizers and the like. We hope that this timely research will help engage the broader community of engineers that wish to help the medical community with this pandemic and to prevent and treat future outbreaks.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Eda Gjika ◽  
Sonali Pal-Ghosh ◽  
Megan E. Kirschner ◽  
Li Lin ◽  
Jonathan H. Sherman ◽  
...  

Abstract Cold atmospheric plasma (CAP) technology, a relatively novel technique mainly investigated as a stand-alone cancer treatment method in vivo and in vitro, is being proposed for application in conjunction with chemotherapy. In this study, we explore whether CAP, an ionized gas produced in laboratory settings and that operates at near room temperature, can enhance Temozolomide (TMZ) cytotoxicity on a glioblastoma cell line (U87MG). Temozolomide is the first line of treatment for glioblastoma, one of the most aggressive brain tumors that remains incurable despite advancements with treatment modalities. The cellular response to a single CAP treatment followed by three treatments with TMZ was monitored with a cell viability assay. According to the cell viability results, CAP treatment successfully augmented the effect of a cytotoxic TMZ dose (50 μM) and further restored the effect of a non-cytotoxic TMZ dose (10 μM). Application of CAP in conjunction TMZ increased DNA damage measured by the phosphorylation of H2AX and induced G2/M cell cycle arrest. These findings were supported by additional data indicating reduced cell migration and increased αvβ3 and αvβ5 cell surface integrin expression as a result of combined CAP–TMZ treatment. The data presented in this study serve as evidence that CAP technology can be a suitable candidate for combination therapy with existing chemotherapeutic drugs. CAP can also be investigated in future studies for sensitizing glioblastoma cells to TMZ and other drugs available in the market.


RSC Advances ◽  
2016 ◽  
Vol 6 (82) ◽  
pp. 78457-78467 ◽  
Author(s):  
Fanny Girard ◽  
Vasilica Badets ◽  
Sylvie Blanc ◽  
Kristaq Gazeli ◽  
Laurent Marlin ◽  
...  

Cold Atmospheric Plasmas (CAPs) are increasingly used for biomedical applications, their various reactive components must be then better determined. We demonstrate that peroxynitrite (ONOO−) is effectively a major reactive species generated by CAPs.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1259
Author(s):  
Dayun Yan ◽  
Alisa Malyavko ◽  
Qihui Wang ◽  
Kostya (Ken) Ostrikov ◽  
Jonathan H. Sherman ◽  
...  

Cold atmospheric plasma (CAP) is a near-room-temperature, partially ionized gas composed of reactive neutral and charged species. CAP also generates physical factors, including ultraviolet (UV) radiation and thermal and electromagnetic (EM) effects. Studies over the past decade demonstrated that CAP could effectively induce death in a wide range of cell types, from mammalian to bacterial cells. Viruses can also be inactivated by a CAP treatment. The CAP-triggered cell-death types mainly include apoptosis, necrosis, and autophagy-associated cell death. Cell death and virus inactivation triggered by CAP are the foundation of the emerging medical applications of CAP, including cancer therapy, sterilization, and wound healing. Here, we systematically analyze the entire picture of multi-modal biological destruction by CAP treatment and their underlying mechanisms based on the latest discoveries particularly the physical effects on cancer cells.


2021 ◽  
Vol 75 (11) ◽  
Author(s):  
Amit Kumar ◽  
Nikola Škoro ◽  
Wolfgang Gernjak ◽  
Nevena Puač

Abstract Water bodies are being contaminated daily due to industrial, agricultural and domestic effluents. In the last decades, harmful organic micropollutants (OMPs) have been detected in surface and groundwater at low concentrations due to the discharge of untreated effluent in natural water bodies. As a consequence, aquatic life and public health are endangered. Unfortunately, traditional water treatment methods are ineffective in the degradation of most OMPs. In recent years, advanced oxidation processes (AOPs) techniques have received extensive attention for the mineralization of OMPs in water in order to avoid serious environmental problems. Cold atmospheric plasma discharge-based AOPs have been proven a promising technology for the degradation of non-biodegradable organic substances like OMPs. This paper reviews a wide range of cold atmospheric plasma sources with their reactor configurations used for the degradation of OMPs (such as organic dyes, pharmaceuticals, and pesticides) in wastewater. The role of plasma and treatment parameters (e.g. input power, voltage, working gas, treatment time, OMPs concentrations, etc.) on the oxidation of various OMPs are discussed. Furthermore, the degradation kinetics, intermediates compounds formed by plasma, and the synergetic effect of plasma in combination with a catalyst are also reported in this review. GraphicAbstract


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 902
Author(s):  
Laura S. Kupke ◽  
Stephanie Arndt ◽  
Simon Lenzer ◽  
Sophia Metz ◽  
Petra Unger ◽  
...  

Cold atmospheric plasma (CAP) reduces bacteria and interacts with tissues and cells, thus improving wound healing. The CAP-related induction of neutrophils was recently described in stained sections of wound tissue in mice. Consequently, this study aimed to examine the functionality of human polymorphonuclear cells (PMN)/granulocytes through either a plasma-treated solution (PTS) or the direct CAP treatment with different plasma modes and treatment durations. PTS analysis yielded mode-dependent differences in the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) after CAP treatment. Live-cell imaging did not show any chemo-attractive or NETosis-inducing effect on PMNs treated with PTS. The time to maximum ROS production (TmaxROS) in PMNs was reduced by PTS and direct CAP treatment. PMNs directly treated with CAP showed an altered cell migration dependent on the treatment duration as well as decreased TmaxROS without inducing apoptosis. Additionally, flow cytometry showed enhanced integrin and selectin expression, as a marker of activation, on PMN surfaces. In conclusion, the modification of PMN immunoreactivity may be a main supporting mechanism for CAP-induced improvement in wound healing.


2020 ◽  
Vol 21 (8) ◽  
pp. 2932 ◽  
Author(s):  
Dušan Braný ◽  
Dana Dvorská ◽  
Erika Halašová ◽  
Henrieta Škovierová

Cold atmospheric plasma use in clinical studies is mainly limited to the treatment of chronic wounds, but its application in a wide range of medical fields is now the goal of many analyses. It is therefore likely that its application spectrum will be expanded in the future. Cold atmospheric plasma has been shown to reduce microbial load without any known significant negative effects on healthy tissues, and this should enhance its possible application to any microbial infection site. It has also been shown to have anti-tumour effects. In addition, it acts proliferatively on stem cells and other cultivated cells, and the highly increased nitric oxide levels have a very important effect on this proliferation. Cold atmospheric plasma use may also have a beneficial effect on immunotherapy in cancer patients. Finally, it is possible that the use of plasma devices will not remain limited to surface structures, because current endeavours to develop sufficiently miniature microplasma devices could very likely lead to its application in subcutaneous and internal structures. This study summarises the available literature on cold plasma action mechanisms and analyses of its current in vivo and in vitro use, primarily in the fields of regenerative and dental medicine and oncology.


2020 ◽  
Vol 5 ◽  
pp. 59-66
Author(s):  
Y.M. Iskanderov ◽  

Aim. The use of intelligent agents in modeling an integrated information system of transport logistics makes it possible to achieve a qualitatively new level of design of control systems in supply chains. Materials and methods. The article presents an original approach that implements the possibilities of using multi-agent technologies in the interests of modeling the processes of functioning of an integrated information system of transport logistics. It is shown that the multi-agent infrastructure is actually a semantic shell of the information system, refl ecting the rules of doing business and the interaction of its participants in the supply chains. The characteristic of the model of the class of an intelligent agent, which is basic for solving problems of management of transport and technological processes, is given. Results. The procedures of functioning of the model of integration of information resources of the participants of the transport services market on the basis of intelligent agents are considered. The presented procedures provide a wide range of network interaction operations in supply chains, including traffi c and network structure “fl exible” control, mutual exchange of content and service information, as well as their distributed processing, and information security. Conclusions. The proposed approach showed that the use of intelligent agents in modeling the functioning of an integrated information system makes it possible to take into account the peculiarities of transport and technological processes in supply chains, such as the integration of heterogeneous enterprises, their distributed organization, an open dynamic structure, standardization of products, interfaces and protocols.


2018 ◽  
Vol 18 (6) ◽  
pp. 784-804 ◽  
Author(s):  
Georg Bauer

Background: Application of cold atmospheric plasma to medium generates “plasma-activated medium” that induces apoptosis selectively in tumor cells and that has an antitumor effect in vivo. The underlying mechanisms are not well understood. Objective: Elucidation of potential chemical interactions within plasma-activated medium and of reactions of medium components with specific target structures of tumor cells should allow to define the active principle in plasma activated medium. Methods: Established knowledge of intercellular apoptosis-inducing reactive oxygen/nitrogen species-dependent signaling and its control by membrane-associated catalase and SOD was reviewed. Model experiments using extracellular singlet oxygen were analyzed with respect to catalase inactivation and their relevance for the antitumor action of cold atmospheric plasma. Potential interactions of this tumor cell-specific control system with components of plasma-activated medium or its reaction products were discussed within the scope of the reviewed signaling principles. Results: None of the long-lived species found in plasma-activated medium, such as nitrite and H2O2, nor OCl- or .NO seemed to have the potential to interfere with catalase-dependent control of apoptosis-inducing signaling of tumor cells when acting alone. However, the combination of H2O2 and nitrite might generate peroxynitrite. The protonation of peroxnitrite to peroxynitrous acid allows for the generation of hydroxyl radicals that react with H2O2, leading to the formation of hydroperoxide radicals. These allow for singlet oxygen generation and inactivation of membrane-associated catalase through an autoamplificatory mechanism, followed by intercellular apoptosis-inducing signaling. Conclusion: Nitrite and H2O2 in plasma-activated medium establish singlet oxygen-dependent interference selectively with the control system of tumor cells.


2018 ◽  
Vol 18 (6) ◽  
pp. 769-775 ◽  
Author(s):  
Dayun Yan ◽  
Jonathan H. Sherman ◽  
Michael Keidar

Background: Over the past five years, the cold atmospheric plasma-activated solutions (PAS) have shown their promissing application in cancer treatment. Similar as the common direct cold plasma treatment, PAS shows a selective anti-cancer capacity in vitro and in vivo. However, different from the direct cold atmospheric plasma (CAP) treatment, PAS can be stored for a long time and can be used without dependence on a CAP device. The research on PAS is gradually becoming a hot topic in plasma medicine. Objectives: In this review, we gave a concise but comprehensive summary on key topics about PAS including the development, current status, as well as the main conclusions about the anti-cancer mechanism achieved in past years. The approaches to make strong and stable PAS are also summarized.


Sign in / Sign up

Export Citation Format

Share Document