Strategic use of feed ingredients and feed additives to stimulate gut health and development in young pigs

2010 ◽  
Vol 134 (1-3) ◽  
pp. 124-134 ◽  
Author(s):  
C.F.M. de Lange ◽  
J. Pluske ◽  
J. Gong ◽  
C.M. Nyachoti
Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1110
Author(s):  
Shengfa F. Liao

Gut health has significant implications for swine nutrient utilization and overall health. The basic gut morphology and its luminal microbiota play determinant roles for maintaining gut health and functions. Amino acids (AA), a group of essential nutrients for pigs, are not only obligatory for maintaining gut mucosal mass and integrity, but also for supporting the growth of luminal microbiota. This review summarized the up-to-date knowledge concerning the effects of dietary AA supplementation on the gut health of weanling piglets. For instance, threonine, arginine, glutamine, methionine and cysteine are beneficial to gut mucosal immunity and barrier function. Glutamine, arginine, threonine, methionine and cysteine can also assist with relieving the post-weaning stress of young piglets by improving gut immunological functions, antioxidant capacity, and/or anti-inflammatory ability. Glutamine, glutamate, glycine and cysteine can assist to reconstruct the gut structure after its damage and reverse its dysfunction. Furthermore, methionine, lysine, threonine, and glutamate play key roles in affecting bacteria growth in the lumen. Overall, the previous studies with different AA showed both similar and different effects on the gut health, but how to take advantages of all these effects for field application is not clear. It is uncertain whether these AA effects are synergetic or antagonistic. The interactions between the effects of non-nutrient feed additives and the fundamental effects of AA warrant further investigation. Considering the global push to minimize the antibiotics and ZnO usage in swine production, a primary effort at present may be made to explore the specific effects of individual AA, and then the concert effects of multiple AA, on the profile and functions of gut microbiota in young pigs.


Author(s):  
S. Grikshas ◽  
N. Kulmakova ◽  
K. Spitsyna ◽  
A. Dar’in ◽  
T. Mittelshtein

Mycotoxins have been formed in feed are secondary metabolites of fungi and are quite stable substances that have teratogenic, mutagenic and carcinogenic effects. An effective way to combat mycotoxins in feed is the use of feed additives that adsorb toxins, prevent their absorption in the gastrointestinal tract of the animal and are excreted from the body. The infl uence of coconut enterosorbent Shelltic Es on fattening and meat qualities of young pigs has been studied. It has been found in the process of fattening that the highest feed digestibility was in pigs of the experimental group, in the diet of which enterosorbent has been added. The results of studies of the chemical composition and technological properties of pork have been provided. The positive eff ect of enterosorbent on precocity, absolute average daily gain of live weight and reduction of feed expenditures per 1 kg of gain has been revealed. In pigs from the experimental group the average thickness of the fat was higher and the area of the “muscle eye” was lower compared with animals of the control group, which indicates that higher rates of carcass yield have been obtained due to faster accumulation of fat tissue. The weight of internal organs of pigs indicates the intensity of metabolic processes in the body. In experimental animals the weight of the lungs was 0,1 kg lower, and the liver and heart were higher by 0,13 and 0,01 kg, respectively. Enterosorbent had no effect on the content of vitamins in the liver of pigs of the compared groups. The content of impurities of organochlorine toxicants and toxic elements in the meat and liver of animals of the experimental group was lower than that of control analogues. Therefore, the use of enterosorbent Shelltic Es promotes more active excretion of them from the body.


2015 ◽  
Vol 81 (17) ◽  
pp. 5880-5888 ◽  
Author(s):  
C. De Maesschalck ◽  
V. Eeckhaut ◽  
L. Maertens ◽  
L. De Lange ◽  
L. Marchal ◽  
...  

ABSTRACTIn broiler chickens, feed additives, including prebiotics, are widely used to improve gut health and to stimulate performance. Xylo-oligosaccharides (XOS) are hydrolytic degradation products of arabinoxylans that can be fermented by the gut microbiota. In the current study, we aimed to analyze the prebiotic properties of XOS when added to the broiler diet. Administration of XOS to chickens, in addition to a wheat-rye-based diet, significantly improved the feed conversion ratio. XOS significantly increased villus length in the ileum. It also significantly increased numbers of lactobacilli in the colon andClostridiumcluster XIVa in the ceca. Moreover, the number of gene copies encoding the key bacterial enzyme for butyrate production, butyryl-coenzyme A (butyryl-CoA):acetate CoA transferase, was significantly increased in the ceca of chickens administered XOS. In this group of chickens, at the species level,Lactobacillus crispatusandAnaerostipes butyraticuswere significantly increased in abundance in the colon and cecum, respectively.In vitrofermentation of XOS revealed cross-feeding betweenL. crispatusandA. butyraticus. Lactate, produced byL. crispatusduring XOS fermentation, was utilized by the butyrate-producingAnaerostipesspecies. These data show the beneficial effects of XOS on broiler performance when added to the feed, which potentially can be explained by stimulation of butyrate-producing bacteria through cross-feeding of lactate and subsequent effects of butyrate on gastrointestinal function.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 77-78
Author(s):  
Trey A Kellner ◽  
Josh Ellingson ◽  
Ana L P de Souza ◽  
Janet C Remus

Abstract The response to probiotics and enzymes is often documented in research facilities with a high degree of control and via pigs with no insults to health or feed intake. However, in commercial conditions, the response to feed additives promoting advanced gut health and improved digestion must be consistent and defined over a wide range of health statuses, stocking densities, feed intakes, environments, and diet formulations. The objective of this experiment was to determine if a combined feed protease and probiotic system (Syncra® SWI 201, DuPont, Wilmington, DE) would improve growth performance and mortality under commercial conditions. A total of 127,092 pigs (6.0 ± 0.1 kg; PIC 337 sired, Hendersonville, TN) from a sow farm producing porcine reproductive and respiratory virus and rotavirus positive weaned pigs were placed in 53 2,400-head commercial wean-to-finish barns that were alternated to 1 of 2 treatments (a control treatment without Syncra® SWI (SSWI) or with SSWI included at 72.6 g/ton of finished feed from 22.7 kg of BW to harvest) in a rolling allotment over a 12-month period. Pigs were on the experiment for an average of 162 ± 1.0 days (until harvest). Throughout the 12-month experimental period, diets (outside of the SSWI inclusion) could change in order to maximize return over feed costs. Data were analyzed using Proc MIXED (SAS 9.4; Cary, NC) with treatment as the main effect and barn as the experimental unit. Compared to the control, adding SSWI improved mortality by 1.9% and percent grade 1 marketed pigs by 2.2% (P ≤ 0.025). Compared to the control, SSWI did not improve ADG (control = 0.75 vs. SSWI = 0.78 kg) or gain:feed (control = 0.401 vs. SSWI = 0.396). In conclusion, the inclusion of the SSWI combined feed protease and probiotic system can improve mortality and grade 1 marketed pigs, but not growth performance under commercial conditions.


Author(s):  
A. S. Ivanova ◽  
N. V. Dunaeva

Increasing the production of pork meat requires careful work not only in terms of breeding, but also in the organization of complete feeding of animals, the correct selection of feed and feed additives containing the necessary nutrients. The purpose of the work was to analyze the use of premix in feeding young pigs on fattening. Two groups of fattening young pigs (Large White×Landrace) have been selected for the researches using the method of analogous groups, taking into account the breed, age, and live weight per 20 heads in each group with a live weight of 35 kg. Pigs of the control group have received the main economic diet, and animals of the experimental group have received an additional premix Khutorok at the rate of 10 g of premix per 1 kg of feed. The results have shown that the best age to reach 100 kg was in the experimental group of pigs – 215,8 days, which received premix with feed that characterizes their higher precocity by 36,3 days (P < 0,001) than in the control group of animals. The use of this premix had a positive impact on the livability of young animals, in the experimental group it was by 9,3 abs.% more than in the control group of animals. Thus, the best fattening traits have been possessed by young pigl of the experimental group have been received the premix Khutorok in their diet at the rate of 10 g of premix per 1 kg of feed. The obtained data indicate the feasibility of using the premix Khutorok in the feeding pigs for fattening.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 181-181
Author(s):  
Martin Lessard ◽  
Mylène Blais ◽  
Guylaine Talbot ◽  
J Jacques Matte ◽  
Ann Letellier ◽  
...  

Abstract Lactation, feeding conditions, microbial interventions and piglet growth in the first few weeks of life have important impact on the intestinal microbiota establishment and immune system development of piglets. Indeed, colostrum and milk contain various bioactive components such as immune factors, antimicrobial peptides and oligosaccharides that contribute to maintain intestinal homeostasis and regulate interactions between microbiota and host immune system. Recent results revealed that low birth weight piglet (LBWP) with poor weight gain during the first two weeks of life develop different intestinal microbiota and immune response profiles compared to high BWP (HBWP) littermates. Consequently, piglets within litters may have different resilience to infections after weaning and benefit from feed additives in a specific manner. A study has been performed to evaluate the potential of bovine colostrum extract (BC) as replacement to plasma proteins for improving gut health and resilience to Salmonella infection in piglets. Results revealed that in weaned piglets fed BC, intestinal microbiota was differently modulated and bacterial dysbiosis induced by Salmonella was restored faster. Moreover, expression of genes involved in innate immunity such as β-defensin-2 and glutathione peroxidase-2 was respectively down- and up-regulated in BC fed piglets. A combination of dietary supplementation with BC, cupper and vitamins A and D has also been tested in LBWP and HBWP, and there is clear evidence that BC in combination with other feed additives promote growth and gut health in both LBWP and HBWP. The porcine intestinal epithelial cell line IPEC-J2 was used to better understand the functional properties of BC. Results indicated that BC improves wound healing, enhances barrier function and modulates the expression of several genes involved in innate immune response. Finally, as microbial intervention, the potential of fecal transplantation to modulate intestinal microbiota and immune system development of piglets is under investigation and will be discussed.


2021 ◽  
Vol 20 (4) ◽  
pp. 33-37
Author(s):  
O. Karunskyi ◽  
G. I. Kotets ◽  
M. M. Madani

The materials of the article present data on research on the chemical, mineral-vitamin composition and nutritional value of a new feed additive from citrus pomace. The article presents the results of research on the technological line of granulation of citrus waste, established the optimal composition for granulation of citrus feed additives: sunflower meal - 20%, molasses - 5% and 75% of citrus fruits.Their chemical composition was studied, the gross content of proteins, fats, assimilated carbohydrates, including simple sugars, was determined, and the efficiency of use in the diets of farm animals was determined. The positive influence of citrus waste granulation technology has been established, which allows to obtain high-quality granules. Chemical analysis of citrus granules showed that 100 g contains: protein - 6.15 g, fat - 0.99 g, carbohydrates - 21.8 g, of which simple sugars 14 g, the energy value of this feed additive - Kcal (kJ) - 120.7 (505.7).The possibility of preparation of feed additives in the form of granules is revealed, which allows to avoid selfsorting of components and overdose of microelements and to improve the consumption of feed ingredients. The ability to prepare feed additives in the form of granules avoids self-sorting of components and overdose of micronutrients and improve the consumption of feed ingredients. The results of zootechnical researches, structure and nutritional value of average daily rations with use of citrus pomace are resulted.It was found that the introduction into the diet of dairy cows feed additives from citrus pomace during stable lactation increases the average daily expectations by 1.8 kg or 15.5%, feed costs for milk production containing 4 fat were 0.97-0, 98 feed units. When using a feed additive from citrus pomace, the nutritional value of the diet is improved due to the ratio of sugar - protein (0.62: 1 vs. 0.8: 1.2).


Author(s):  
Christopher Marlowe A. Caipang

Increasing pace in aquaculture development to meet the growing food requirements of the population has greatly compromised the carrying capacity of the culture environment and has placed the aquacultured animals at heightened risk of getting diseases due to pathogens. At present, chemotherapy is widely used as means to prevent or treat infectious diseases in aquaculture; however, the use of these drugs poses multiple negative impacts on fish and human health, as well as the environment. Recently, research initiatives are focused on the use of plant products and their derivatives as a means of controlling diseases in aquaculture. They are regarded as a promising alternative to the use of chemical treatments for infectious diseases in fish. Plant-derived products or phytogenics have been shown to stimulate appetite and promote weight gain in farmed animals, act as immunostimulants, and possess potent anti-pathogenic properties in fish. Their potency is mediated by the presence of bioactive molecules including alkaloids, terpenoids, saponins, and flavonoids, among others. Moreover, nutritional strategies are geared towards the use of these phytogenics in modulating immune and physiological responses, as well as promoting optimum health and microbial community in the gastrointestinal tract of fish. This review synthesizes the current knowledge on the use of phytogenic feed additives in aquaculture by focusing on how these substances act as modulators of health and bacterial community in the gut of fish.


2013 ◽  
Vol 79 (23) ◽  
pp. 7264-7272 ◽  
Author(s):  
Barbara U. Metzler-Zebeli ◽  
Evelyne Mann ◽  
Stephan Schmitz-Esser ◽  
Martin Wagner ◽  
Mathias Ritzmann ◽  
...  

ABSTRACTSeveral dietary ingredients may affect the bacterial community structure and metabolism in the porcine gut and may therefore influence animals' health and performance. This study investigated the effects of cereal source and calcium-phosphorus (CaP) level in the diet on bacterial microbiota and metabolites, nutrient intake, and gut environment in weaned pigs. Pigs (n= 8/treatment) were fed wheat-barley- or corn-based diets with an adequate or high CaP level for 14 days. Effects on microbiota in the stomach, ileum, and midcolon were assessed using quantitative PCR. Data showed thatEnterobacteriaceae,Campylobacterspp., andHelicobacterspp., which all contain highly immune reactive lipopolysaccharide (LPS), were abundant at all gut sites. Diet effects on bacteria and metabolites were moderate and occurred mainly in the upper gut, whereas no effects on bacteria, fermentation products, and LPS could be observed in the colon. Differences in carbohydrate intake with corn versus wheat-barley diets selectively stimulatedBifidobacteriumin the stomach and ileum. There was a growth advantage for a few bacterial groups in the stomach and ileum of pigs fed the high versus adequate CaP level (i.e., gastricEnterobacteriaceaeand ilealEnterococcus,Bacteroides-Prevotella-Porphyromonas, andCampylobacter). Interestingly, gastrointestinal pH was not affected by dietary CaP level. The present findings demonstrate the stability of the bacterial community and gut environment toward dietary changes even in young pigs. The results on stimulation of gastric and ilealBifidobacteriumby corn diets may be employed in nutritional strategies to support gut health after weaning.


Sign in / Sign up

Export Citation Format

Share Document