The impact of exogenous abscisic acid on carotenoid composition and carotenoid pathway gene expression in carrot callus in vitro

2016 ◽  
Vol 33 ◽  
pp. S158
Author(s):  
Tomasz Oleszkiewicz ◽  
Magdalena Klimek-Chodacka ◽  
Anna Kostyn ◽  
Aleksandra Boba ◽  
Jan Szopa ◽  
...  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Federico Tinarelli ◽  
Elena Ivanova ◽  
Ilaria Colombi ◽  
Erica Barini ◽  
Edoardo Balzani ◽  
...  

Abstract Background DNA methylation has emerged as an important epigenetic regulator of brain processes, including circadian rhythms. However, how DNA methylation intervenes between environmental signals, such as light entrainment, and the transcriptional and translational molecular mechanisms of the cellular clock is currently unknown. Here, we studied the after-hours mice, which have a point mutation in the Fbxl3 gene and a lengthened circadian period. Methods In this study, we used a combination of in vivo, ex vivo and in vitro approaches. We measured retinal responses in Afh animals and we have run reduced representation bisulphite sequencing (RRBS), pyrosequencing and gene expression analysis in a variety of brain tissues ex vivo. In vitro, we used primary neuronal cultures combined to micro electrode array (MEA) technology and gene expression. Results We observed functional impairments in mutant neuronal networks, and a reduction in the retinal responses to light-dependent stimuli. We detected abnormalities in the expression of photoreceptive melanopsin (OPN4). Furthermore, we identified alterations in the DNA methylation pathways throughout the retinohypothalamic tract terminals and links between the transcription factor Rev-Erbα and Fbxl3. Conclusions The results of this study, primarily represent a contribution towards an understanding of electrophysiological and molecular phenotypic responses to external stimuli in the Afh model. Moreover, as DNA methylation has recently emerged as a new regulator of neuronal networks with important consequences for circadian behaviour, we discuss the impact of the Afh mutation on the epigenetic landscape of circadian biology.


2021 ◽  
Vol 22 (3) ◽  
pp. 1222
Author(s):  
Cristina Cuello ◽  
Cristina A. Martinez ◽  
Josep M. Cambra ◽  
Inmaculada Parrilla ◽  
Heriberto Rodriguez-Martinez ◽  
...  

This study was designed to investigate the impact of vitrification on the transcriptome profile of blastocysts using a porcine (Sus scrofa) model and a microarray approach. Blastocysts were collected from weaned sows (n = 13). A total of 60 blastocysts were vitrified (treatment group). After warming, vitrified embryos were cultured in vitro for 24 h. Non-vitrified blastocysts (n = 40) were used as controls. After the in vitro culture period, the embryo viability was morphologically assessed. A total of 30 viable embryos per group (three pools of 10 from 4 different donors each) were subjected to gene expression analysis. A fold change cut-off of ±1.5 and a restrictive threshold at p-value < 0.05 were used to distinguish differentially expressed genes (DEGs). The survival rates of vitrified/warmed blastocysts were similar to those of the control (nearly 100%, n.s.). A total of 205 (112 upregulated and 93 downregulated) were identified in the vitrified blastocysts compared to the control group. The vitrification/warming impact was moderate, and it was mainly related to the pathways of cell cycle, cellular senescence, gap junction, and signaling for TFGβ, p53, Fox, and MAPK. In conclusion, vitrification modified the transcriptome of in vivo-derived porcine blastocysts, resulting in minor gene expression changes.


Author(s):  
Mandy Rauschner ◽  
Luisa Lange ◽  
Thea Hüsing ◽  
Sarah Reime ◽  
Alexander Nolze ◽  
...  

Abstract Background The low extracellular pH (pHe) of tumors resulting from glycolytic metabolism is a stress factor for the cells independent from concomitant hypoxia. The aim of the study was to analyze the impact of acidic pHe on gene expression on mRNA and protein level in two experimental tumor lines in vitro and in vivo and were compared to hypoxic conditions as well as combined acidosis+hypoxia. Methods Gene expression was analyzed in AT1 prostate and Walker-256 mammary carcinoma of the rat by Next Generation Sequencing (NGS), qPCR and Western blot. In addition, the impact of acidosis on tumor cell migration, adhesion, proliferation, cell death and mitochondrial activity was analyzed. Results NGS analyses revealed that 147 genes were uniformly regulated in both cell lines (in vitro) and 79 genes in both experimental tumors after 24 h at low pH. A subset of 25 genes was re-evaluated by qPCR and Western blot. Low pH consistently upregulated Aox1, Gls2, Gstp1, Ikbke, Per3, Pink1, Tlr5, Txnip, Ypel3 or downregulated Acat2, Brip1, Clspn, Dnajc25, Ercc6l, Mmd, Rif1, Zmpste24 whereas hypoxia alone led to a downregulation of most of the genes. Direct incubation at low pH reduced tumor cell adhesion whereas acidic pre-incubation increased the adhesive potential. In both tumor lines acidosis induced a G1-arrest (in vivo) of the cell cycle and a strong increase in necrotic cell death (but not in apoptosis). The mitochondrial O2 consumption increased gradually with decreasing pH. Conclusions These data show that acidic pHe in tumors plays an important role for gene expression independently from hypoxia. In parallel, acidosis modulates functional properties of tumors relevant for their malignant potential and which might be the result of pH-dependent gene expression.


2021 ◽  
Author(s):  
Jozsef Bodis ◽  
Endre Sulyok ◽  
Akos Varnagy ◽  
Viktória Prémusz ◽  
Krisztina Godony ◽  
...  

Abstract BackgroundThis observational clinical study evaluated the expression levels and predictive values of some apoptosis-related genes in granulosa cells (GCs) and follicular fluid (FF) of women undergoing in vitro fertilization (IVF).Methods GCs and FF were obtained at oocyte retrieval from 31 consecutive patients with heterogeneous infertility diagnosis (age: 34.3±5.8 years, body mass index: 24.02±3.12 kg/m2, duration of infertility: 4.2±2.1 years). mRNA expression of pro-apoptotic (BAX, CASP3, CASP8) and anti-apoptotic (BCL2, AMH, AMHR, FSHR, LHR, CYP19A1) factors was determined by quantitative RT-PCR using ROCHE LightCycler 480. Results No significant difference in GC or FF mRNA expression of pro- and anti-apoptotic factors could be demonstrated between IVF patients with (9 patients) or without (22 patients) clinical pregnancy. Each transcript investigated was detected in FF, but their levels were markedly reduced and independent of those in GCs. The number of retrieved oocytes was positively associated with GC AMHR (r=0.393, p=0.029), but the day of embryo transfer was negatively associated with GC LHR (r=-0.414, p=0.020) and GC FSHR transcripts (r=-0.535, p=0.002). When pregnancy positive group was analysed separately the impact of apoptosis- related gene expressions on some selected measures of IVF success could be observed. Strong positive relationship was found between gene expression levels of pro- and anti-apoptotic factors in GCs.ConclusionOur study provides only marginal evidences for the apoptosis dependence of IVF outcome and suggests that the apoptosis process induces adaptive increases of the anti-apoptotic gene expression to attenuate apoptosis and to protect cell survival.


2022 ◽  
Author(s):  
Laura Robrahn ◽  
Aline Dupont ◽  
Sandra Jumpertz ◽  
Kaiyi Zhang ◽  
Christian H. Holland ◽  
...  

The hypoxia-inducible transcription factor 1 (HIF-1) has been shown to enhance microbial killing and to ameliorate the course of bacterial infections. While the impact of HIF-1 on inflammatory diseases of the gut has been studied intensively, its function in bacterial infections of the gastrointestinal tract remains largely elusive. With the help of a publicly available gene expression data set, we could infer significant activation of HIF-1 after oral infection of mice with Salmonella Typhimurium. Immunohistochemistry and western blot analysis confirmed marked HIF-1α protein stabilization, especially in the intestinal epithelium. This prompted us to analyze conditional Hif1a -deficient mice to examine cell type-specific functions of HIF-1 in this model. Our results demonstrate enhanced non-canonical induction of HIF-1 activity upon Salmonella infection in the intestinal epithelium as well as in macrophages. Surprisingly, Hif1a deletion in intestinal epithelial cells did not impact on inflammatory gene expression, bacterial spread or disease outcome. In contrast, Hif1a deletion in myeloid cells enhanced intestinal Cxcl2 expression and reduced the cecal Salmonella load. In vitro , HIF-1α-deficient macrophages showed an overall impaired transcription of mRNA encoding pro-inflammatory factors, however, intracellular survival of Salmonella was not impacted by HIF-1α deficiency.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3864
Author(s):  
Karla Fabiola Corral-Jara ◽  
Laura Cantini ◽  
Nathalie Poupin ◽  
Tao Ye ◽  
Jean Paul Rigaudière ◽  
...  

Insulin resistance decreases the ability of insulin to inhibit hepatic gluconeogenesis, a key step in the development of metabolic syndrome. Metabolic alterations, fat accumulation, and fibrosis in the liver are closely related and contribute to the progression of comorbidities, such as hypertension, type 2 diabetes, or cancer. Omega 3 (n-3) polyunsaturated fatty acids, such as eicosapentaenoic acid (EPA), were identified as potent positive regulators of insulin sensitivity in vitro and in animal models. In the current study, we explored the effects of a transgenerational supplementation with EPA in mice exposed to an obesogenic diet on the regulation of microRNAs (miRNAs) and gene expression in the liver using high-throughput techniques. We implemented a comprehensive molecular systems biology approach, combining statistical tools, such as MicroRNA Master Regulator Analysis pipeline and Boolean modeling to integrate these biochemical processes. We demonstrated that EPA mediated molecular adaptations, leading to the inhibition of miR-34a-5p, a negative regulator of Irs2 as a master regulatory event leading to the inhibition of gluconeogenesis by insulin during the fasting–feeding transition. Omics data integration provided greater biological insight and a better understanding of the relationships between biological variables. Such an approach may be useful for deriving innovative data-driven hypotheses and for the discovery of molecular–biochemical mechanistic links.


2019 ◽  
Author(s):  
Katelyn Donahue ◽  
Yaqing Zhang ◽  
Veerin Sirihorachai ◽  
Stephanie The ◽  
Arvind Rao ◽  
...  

2017 ◽  
Vol 29 (1) ◽  
pp. 185 ◽  
Author(s):  
B. C. S. Leao ◽  
N. A. S. Rocha Frigoni ◽  
P. C. Dall'Acqua ◽  
M. Ambrogi ◽  
G. B. Nunes ◽  
...  

This study was conducted to evaluate the impact of supplementation during in vitro maturation (IVM) with linolenic acid (ALA), l-carnitine (L-car), or the combination of both supplements on the embryo intracellular lipid content and cryotolerance, as well as in the embryo expression of genes involved in lipid metabolism (lipogenesis regulation: SCD1, FASN, and SREBP1; and β-oxidation pathway: CPT1B and CPT2). Cumulus-oocyte complexes (n = 1076) were IVM for 22 h at 38.5°C and 5% CO2 in air, in TCM-199 medium with bicarbonate, hormones, and 10% FCS (control group), supplemented with 100 μM ALA (ALA group), 5 mM L-car (L-car group), or a combination of 100 μM ALA + 5 mM L-car (ALA + L-car group). After IVF, presumptive zygotes were in vitro cultured in SOFaa medium supplemented with 5 mg mL−1 BSA and 2.5% FCS, at 38.5°C and 5% CO2 in air during 7 days. Cleavage and blastocyst rates were evaluated on Day 3 and 7, respectively (IVF = Day 0). At Day 7, the blastocysts were stained with the lipophilic dye Sudan Black B (n = 60), vitrified/warmed (n = 260; Ingámed® protocol, Maringa-PR, Brazil), or collected for analysis of gene expression (n = 180). Embryonic development were analysed by ANOVA and the multiple comparisons of means were determined by Tukey’s test. The embryonic re-expansion data were subjected to chi-square test and the differences in gene expression among groups were evaluated by Duncan’s multiple range test (P < 0.05). Data are presented as means ± standard error means. There was no effect (P > 0.05) of the supplements used during IVM on cleavage (79.54 ± 2.76% to 82.16 ± 1.13%) and blastocyst rates (29.03 ± 3.07% to 30.46 ± 2.01%). Similarly, the intracellular lipid content in Day-7 blastocysts (1.03 ± 0.04 to 1.15 ± 0.07 pixels) and the embryonic cryotolerance, assessed by the re-expansion rates after 24 h (67.3 to 78.3%) hatching rates after 48 h (11.5 to 25.5%) of post-warming culture, were unaffected (P > 0.05) by the supplements of IVM medium. Although the treatments did not alter (P > 0.05) the expression of CPT1B and CPT2 genes, the expression of FASN gene was decreased (P < 0.05) in the ALA group and the expression of SREBP1 gene was decreased (P < 0.05) in the ALA and L-car groups. The expression of the gene SCD1 was reduced (P < 0.05) in all treatments compared with the control group. Thus, despite the lack of effects of the treatments performed during IVM on the intracellular lipid content and cryotolerance of the embryos derived from the treated oocytes, a reduction in the expression of genes related to lipogenesis was observed in Day-7 blastocysts. These results suggest that treatments performed in the oocytes during IVM may have prolonged effects, affecting the subsequent expression of genes in embryos. Further studies are needed to determine the mechanisms related to the differentiation of the oocyte machinery during maturation. Financial support was provided by FAPESP (#2012/10084–4 and #2013/07382–6).


2020 ◽  
Vol 318 (6) ◽  
pp. L1261-L1269 ◽  
Author(s):  
Andrew J. Goodwin ◽  
Pengfei Li ◽  
Perry V. Halushka ◽  
James A. Cook ◽  
Aman S. Sumal ◽  
...  

Circulating microRNAs (miRNAs) can be taken up by recipient cells and have been recently associated with the acute respiratory distress syndrome (ARDS). Their role in host predisposition to the syndrome is unknown. The objective of the study was to identify circulating miRNAs associated with the development of sepsis-related ARDS and examine their impact on endothelial cell gene expression and function. We determined miRNA levels in plasma collected from subjects during the first 24 h of admission to a tertiary intensive care unit for sepsis. A miRNA that was differentially expressed between subjects who did and did not develop ARDS was identified and was transfected into human pulmonary microvascular endothelial cells (HPMECs). RNA sequencing, in silico analysis, cytokine expression, and leukocyte migration assays were used to determine the impact of this miRNA on gene expression and cell function. In two cohorts, circulating miR-887-3p levels were elevated in septic patients who developed ARDS compared with those who did not. Transfection of miR-887-3p into HPMECs altered gene expression, including the upregulation of several genes previously associated with ARDS (e.g., CXCL10, CCL5, CX3CL1, VCAM1, CASP1, IL1B, IFNB, and TLR2), and activation of cellular pathways relevant to the response to infection. Functionally, miR-887-3p increased the endothelial release of chemokines and facilitated trans-endothelial leukocyte migration. Circulating miR-887-3p is associated with ARDS in critically ill patients with sepsis. In vitro, miR-887-3p regulates the expression of genes relevant to ARDS and neutrophil tracking. This miRNA may contribute to ARDS pathogenesis and could represent a novel therapeutic target.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 739-739
Author(s):  
Vijay P. S. Rawat ◽  
Natalia Arseni ◽  
Farid Ahmed ◽  
Medhanie A. Mulaw ◽  
Silvia Thoene ◽  
...  

Abstract Abstract 739 Recent studies suggest that a variety of regulatory molecules active in embryonic development such as clustered and non-clustered homeobox genes play an important role in normal and malignant hematopoiesis. Since it was shown that the Xvent-2 homeobox gene is part of the BMP-4 signalling pathway in Xenopus, it is of particular interest to examine the expression profile and function of its only recently discovered human homologue VENTX in hematopoietic development. Expression of the VENTX gene was analyzed in normal human hematopoiesis and AML patients samples by microarray and qPCR. To test the impact of the constitutive expression of VENTX on human progenitor cells, CD34+ cord blood (CB) cells were retrovirally transduced with VENTX or the empty control vector and analyzed using in vitro and in vivo assays. So far we and others have not been able to identify a murine Xenopus xvent gene homologue. However, we were able to document the expression of this gene by qPCR in human lineage positive hematopoietic subpopulations. Amongst committed progenitors VENTX was significantly 13-fold higher expressed in CD33+ BM myeloid cells (4/4 positive) compared to CD19+ BM lymphoid cells (5/7 positive, p=0.01). Of note, expression of VENTX was negligible in normal CD34+/CD38− but detectable in CD34+ BM human progenitor cells. In contrast to this, leukemic CD34+/CD38− from AML patients (n=3) with translocation t(8,21) showed significantly elevated expression levels compared to normal CD34+ BM cells (n=5) (50-fold higher; p≤0.0001). Furthermore, patients with normal karyotype NPM1c+/FLT3-LM− (n=9), NPM1c−/FLT3-LM+ (n=8) or patients with t(8;21) (n=9) had an >100-fold higher expression of VENTX compared to normal CD34+ BM cells and a 5- to 7.8-fold higher expression compared to BM MNCs. Importantly, lentivirus-mediated long-term silencing of VENTX in human AML cell lines (mRNA knockdown between 58% and 75%) led to a significant, reduction in cell number compared to the non-silencing control construct (>79% after 120h). Suggesting that growth of human leukemic cell lines depends on VENTX expression in vitro. As we observed that VENTX is aberrantly expressed in leukemic CD34+ cells with negligible expression in normal counterparts, we assessed the impact of forced VENTX gene expression in normal CD34+ human progenitor cells on the transcription program. Gene expression and pathway analysis demonstrated that in normal CD34+ cells enforced expression of VENTX initiates genes associated with myeloid development (CD11b, CD125, CD9,CD14 and M-CSF), and downregulates genes involved in early lymphoid development (IL-7, IL-9R, LEF1/TCF and C-JUN) and erythroid development such as EPOR, CD35 and CD36. We then tested whether enforced expression of VENTX in CD34+ cells is able to alter the hematopoietic development of early human progenitors as indicated by gene expression and pathway analyses. Functional analyses confirmed that aberrant expression of VENTX in normal CD34+ human progenitor cells induced a significant increase in the number of myeloid colonies compared to the GFP control with 48 ± 6.5 compared to 28.9 ± 4.8 CFU-G per 1000 initially plated CD34+ cells (n=11; p=0.03) and complete block in erythroid colony formation with an 81% reduction of the number of BFU-E compared to the control (n=11; p<0.003). In a feeder dependent co-culture system, VENTX impaired the development of B-lymphoid cells. In the NOD/SCID xenograft model, VENTX expression in CD34+ CB cells promoted generation of myeloid cells with an over 5-fold and 2.5-fold increase in the proportion of human CD15+ and CD33+ primitive myeloid cells compared to the GFP control (n=5, p=0.01). Summary: Overexpression of VENTX perturbs normal hematopoietic development, promotes generation of myeloid cells and impairs generation of lymphoid cells in vitro and in vivo. Whereas VENTX depletion in human AML cell lines impaired their growth.Taken together, these data extend our insights into the function of human embryonic mesodermal factors in human hematopoiesis and indicate a role of VENTX in normal and malignant myelopoiesis. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document