scholarly journals Camelina sativa, a short gestation oilseed crop with biofuel potential: Opportunities for Indian scenario

2021 ◽  
Author(s):  
Ankur Agarwal ◽  
Om Prakash ◽  
Madhu Bala
2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Katharina Kawall

Abstract‘Genome editing’ is intended to accelerate modern plant breeding enabling a much faster and more efficient development of crops with improved traits such as increased yield, altered nutritional composition, as well as resistance to factors of biotic and abiotic stress. These traits are often generated by site-directed nuclease-1 (SDN-1) applications that induce small, targeted changes in the plant genomes. These intended alterations can be combined in a way to generate plants with genomes that are altered on a larger scale than it is possible with conventional breeding techniques. The power and the potential of genome editing comes from its highly effective mode of action being able to generate different allelic combinations of genes, creating, at its most efficient, homozygous gene knockouts. Additionally, multiple copies of functional genes can be targeted all at once. This is especially relevant in polyploid plants such as Camelina sativa which contain complex genomes with multiple chromosome sets. Intended alterations induced by genome editing have potential to unintentionally alter the composition of a plant and/or interfere with its metabolism, e.g., with the biosynthesis of secondary metabolites such as phytohormones or other biomolecules. This could affect diverse defense mechanisms and inter-/intra-specific communication of plants having a direct impact on associated ecosystems. This review focuses on the intended alterations in crops mediated by SDN-1 applications, the generation of novel genotypes and the ecological effects emerging from these intended alterations. Genome editing applications in C. sativa are used to exemplify these issues in a crop with a complex genome. C. sativa is mainly altered in its fatty acid biosynthesis and used as an oilseed crop to produce biofuels.


2019 ◽  
Author(s):  
Richard Rizzitello ◽  
Chuan-Jie Zhang ◽  
Carol Auer

AbstractCamelina sativa (camelina) is an oilseed crop in the Brassicaceae that has been genetically engineered for the production of biofuels, dietary supplements, and other industrial compounds. Cultivation in North America is both recent and limited, so there are gaps in knowledge regarding yield, weed competition, and pollen-mediated gene flow. For these experiments, camelina ‘SO-40’ was grown for three years without weed control. Spring-sown camelina was harvested at 80-88 days with ∼1200 growing degree days (GDD) with yields of 425-508 kg/hectare. Camelina yields were the same with or without weeds, showing competitive ability in low-management conditions. Crop failure in 2015 was associated with delayed rainfall and above-average temperatures after seeding. Camelina flowers attracted pollinating insects from the Hymenoptera, Diptera, Lepidoptera, and Coleoptera. Hymenoptera included honey bees (Apis melifera), mining bees (Andrenidae), sweat bees (Halictidae), bumble bees (Bombus spp.) and leaf cutter bees (Megachilidae). Insect visitation on camelina flowers was associated with modest increases in seed yield. Honey bees comprised 28-33% of all pollinators and were shown to carry camelina pollen on their legs. Air sampling showed that wind-blown pollen was present at low concentrations at 9 m beyond the edges of the field. These experiments demonstrated for the first time that camelina pollen dispersal could occur through honey bees or wind, although bee activity would likely be more significant for long-distance gene flow.


2014 ◽  
Vol 14 ◽  
pp. 80-83 ◽  
Author(s):  
B Chantsalnyam ◽  
Ch Otgonbayar ◽  
O Enkhtungalag ◽  
P Odonmajig

Camelina sativa L is a cruciferous oilseed plant. This plant is cultivated as an oilseed crop mainly in Europe and in North America and over the past years the cultivation has arranged in our country. The analyzed oil is obtained from the seeds of Camelina sativa L, growing in Bornuur, Tuv province. The goal of this study was to determine the physical and chemical characteristics and fatty acids composition of Camelina sativa L seed oil cultivated in Mongolia. According to our analysis total lipid was determined 38.52 %, moisture 4.80 % and total mineral elements 4.02 %, respectively. Mineral elements in Camelina sativa L seeds contain calcium (0.56 %), phosphorous (1.22 %), potassium (1.39 %), magnesium (0.53 %) in dominated amounts; iron, zinc, manganese and copper in trace amounts. Eight nonessential amino acids in seeds of this plant with total amount of 75.9 % were identified; phenylalanine was detected in highest amount among the all identified amino acids, while lysine, tryptophan and arginine are followed. The following characteristics in Camelina sativa seeds oil were determined. The refractive index was 1.4774 at 20°C, the peroxide value of fresh oil was 0.03 meq H2O2 /kg, saponification value 185.8 mg KOH/g, iodine value 143.33 g J2 and acidic value 6.27 mg KOH /g. Carotenoid was determined as 16.77 mg %, by spectrometry in Camelina sativa seeds oil. The analysis of fatty acids composition showed that there are 12.5 % saturated and 87.5 % unsaturated fatty acids. In particular, oleic acid (C18:1) 14.0 %, linoleic acid (C18:2) 9.0 %, α-linolenic acid (C18:3) 10.5 % and gondoic acid (C20:1) 32.8 %, were composed the major part of unsaturated fatty acids. DOI: http://dx.doi.org/10.5564/mjc.v14i0.205 Mongolian Journal of Chemistry 14 (40), 2013, p80-83


Author(s):  
E.L. Turina ◽  
◽  
S.G. Efimenko ◽  
Yu.A. Kornev ◽  
A.P. Liksutina ◽  
...  

Camelina sativa (L.) Crantz – is an annual oilseed crop in the family Brassicaceae. The aim of the research was to study oil obtained from camelina seeds cultivated in the Crimea. Determination of fatty acid composition was carried out on the gas chromatograph “Хроматэк – Кристалл 5000” (Hromatek - Crystal 5000); automatic dosing unit ДАЖ-2М (DAJ- 2M); capillary column SolGelWax 30m × 0.25 mm × 0.5 μm; carrier gas – helium; speed – 22 centimeters per second; programming temperature –178–230 °С. The preparation of fatty acid methyl esters (FAMEs) using gas-liquid chromatography (GC) was performed in line with the methodology. The content of biologically active substances (tocopherols) in Camelina sativa oil was carried out using thin-layer chromatography (TLC) and spectroscopy. To obtain biofuel, we used the transesterification of triglyceride (or triacylglycerols) of camelina oil with methyl alcohol using potassium hydroxide (or sodium) as a homogeneous catalyst, as well as active metal oxides or enzymes (regiospecific lipase) as heterogeneous catalysts. Camelina sativa oil, obtained from false flax cultivated in the Crimea, should be used, first of all, to ensure healthy, dietary and therapeutic nutrition of the locals and tourists. Since, depending on the variety and the amount of precipitation, it contains 17.89-19.66% of linoleic acid; 33.02-37.06% of linolenic acid; not more than 3.05% of erucic acid. Furthermore, the ratio of omega-3 to omega-6 fatty acids varies from 1.7: 1.0 to 2.2: 1.0 even in wet years. The oil from the winter camelina seeds (‘Penzyak’ variety) in its composition and properties is suitable for the synthesis of biodiesel by the methanolysis reaction using a homogeneous alkaline catalyst. The physical and chemical properties of the obtained biodiesel are similar to those of sunflower or rapeseed oils.


2018 ◽  
Vol 119 (12) ◽  
pp. 1378-1392 ◽  
Author(s):  
Mónica B. Betancor ◽  
Keshuai Li ◽  
Valentin S. Bucerzan ◽  
Matthew Sprague ◽  
Olga Sayanova ◽  
...  

AbstractFacing a bottleneck in the growth of aquaculture, and a gap in the supply and demand of the highly beneficial n-3 long-chain PUFA (LC-PUFA), sustainable alternatives to traditional marine-based feeds are required. Therefore, in the present trial, a novel oil obtained from a genetically engineered oilseed crop, Camelina sativa, that supplied over 25 % n-3 LC-PUFA was tested as a sole dietary-added lipid source in Atlantic salmon (Salmo salar) feed. Three groups of fish were fed three experimental diets for 12 weeks with the same basal composition and containing 20 % added oil supplied by either a blend of fish oil and rapeseed oil (1:3) (COM) reflecting current commercial formulations, wild-type Camelina oil (WCO) or the novel transgenic Camelina oil (TCO). There were no negative effects on the growth, survival rate or health of the fish. The whole fish and flesh n-3 LC-PUFA levels were highest in fish fed TCO, with levels more than 2-fold higher compared with those of fish fed the COM and WCO diets, respectively. Diet TCO had no negative impacts on the evaluated immune and physiological parameters of head kidney monocytes. The transcriptomic responses of liver and mid-intestine showed only mild effects on metabolism genes. Overall, the results clearly indicated that the oil from transgenic Camelina was highly efficient in supplying n-3 LC-PUFA providing levels double that obtained with a current commercial standard, and similar to those a decade ago before substantial dietary fishmeal and oil replacement.


Plant Disease ◽  
2019 ◽  
Vol 103 (11) ◽  
pp. 2884-2892 ◽  
Author(s):  
Maria I. Purnamasari ◽  
William Erskine ◽  
Janine S. Croser ◽  
Ming Pei You ◽  
Martin J. Barbetti

Sclerotinia sclerotiorum and Leptosphaeria maculans are two of the most important pathogens of many cruciferous crops. The reaction of 30 genotypes of Camelina sativa (false flax) was determined against both pathogens. C. sativa genotypes were inoculated at seedling and adult stages with two pathotypes of S. sclerotiorum, highly virulent MBRS-1 and less virulent WW-1. There were significant differences (P < 0.001) among genotypes, between pathotypes, and a significant interaction between genotypes and pathotypes in relation to percent cotyledon disease index (% CDI) and stem lesion length. Genotypes 370 (% CDI 20.5, stem lesion length 1.8 cm) and 253 (% CDI 24.8, stem lesion length 1.4 cm) not only consistently exhibited cotyledon and stem resistance, in contrast to susceptible genotype 2305 (% CDI 37.7, stem lesion length 7.2 cm), but their resistance was independent to S. sclerotiorum pathotype. A F5-recombinant inbred line population was developed from genotypes 370 × 2305 and responses characterized. Low broad-sense heritability indicated a complex pattern of inheritance of resistance to S. sclerotiorum. Six isolates of L. maculans, covering combinations of five different avirulent loci (i.e., five different races), were tested on C. sativa cotyledons across two experiments. There was a high level of resistance, with % CDI < 17, and including development of a hypersensitive reaction. This is the first report of variable reaction of C. sativa to different races of L. maculans and the first demonstrating comparative reactions of C. sativa to S. sclerotiorum and L. maculans. This study not only provides new understanding of these comparative resistances in C. sativa, but highlights their potential as new sources of resistance, both for crucifer disease-resistance breeding in general and to enable broader adoption of C. sativa as a more sustainable oilseed crop in its own right.


2020 ◽  
Vol 21 (21) ◽  
pp. 8365
Author(s):  
Dhondup Lhamo ◽  
Qiaolin Shao ◽  
Renjie Tang ◽  
Sheng Luan

Phosphate transporters (PHTs) play pivotal roles in phosphate (Pi) acquisition from the soil and distribution throughout a plant. However, there is no comprehensive genomic analysis of the PHT families in Camelina sativa, an emerging oilseed crop. In this study, we identified 73 CsPHT members belonging to the five major PHT families. A whole-genome triplication event was the major driving force for CsPHT expansion, with three homoeologs for each Arabidopsis ortholog. In addition, tandem gene duplications on chromosome 11, 18 and 20 further enlarged the CsPHT1 family beyond the ploidy norm. Phylogenetic analysis showed clustering of the CsPHT1 and CsPHT4 family members into four distinct groups, while CsPHT3s and CsPHT5s were clustered into two distinct groups. Promoter analysis revealed widespread cis-elements for low-P response (P1BS) specifically in CsPHT1s, consistent with their function in Pi acquisition and translocation. In silico RNA-seq analysis revealed more ubiquitous expression of several CsPHT1 genes in various tissues, whereas CsPHT2s and CsPHT4s displayed preferential expression in leaves. While several CsPHT3s were expressed in germinating seeds, most CsPHT5s were expressed in floral and seed organs. Suneson, a popular Camelina variety, displayed better tolerance to low-P than another variety, CS-CROO, which could be attributed to the higher expression of several CsPHT1/3/4/5 family genes in shoots and roots. This study represents the first effort in characterizing CsPHT transporters in Camelina, a promising polyploid oilseed crop that is highly tolerant to abiotic stress and low-nutrient status, and may populate marginal soils for biofuel production.


2008 ◽  
Vol 88 (1) ◽  
pp. 111-119 ◽  
Author(s):  
S. D. Urbaniak ◽  
C. D. Caldwell ◽  
V. D. Zheljazkov ◽  
R. Lada ◽  
L. Luan

Worldwide, oilseed demand is steadily expanding. This study assessed the novel oilseed crop Camelina sativa L. in the Maritime Provinces of Canada. Evaluations of cultivar and applied N were performed at Truro, NS, Harrington, PEI, and Hartland, NB, in 2005 and 2006. The results show that the selection of cultivar is an important determinant for the potential success or failure of C. sativa production. Differences in plant stand, plant height, seed yield, oil content and fatty acid profile were found among the cultivars. The cultivar Calena provided the most consistent performance in terms of plant establishment, yield and oil content across all year-sites. Plant height, seed yield, oil content, total plant N and seed protein all responded to applied N rate. Applied N increased the seed yield of C. sativa, but the increase was not significant when the application rates were over 60 kg N ha-1 in NS or 80 kg N ha-1 in PEI. Plant height, total N content in plant tissue and seed protein content increased with increased N application, while oil content decreased. With the exception of erucic acid, all the main fatty acids in C. sativa oil responded to applied N levels or the interaction of N levels and year. Regression analysis showed that the contents of oleic acid and eicosenoic acid decreased with increased N application. The response of linolenic acid to N application was not consistent at each year-site. Results of this study provide convincing evidence of the agronomic suitability of C. sativa to the Maritime Provinces of Canada. Key words: Camelina sativa, cultivar, nitrogen, yield, seed quality


2020 ◽  
Vol 10 (4) ◽  
pp. 1297-1308 ◽  
Author(s):  
Raju Chaudhary ◽  
Chu Shin Koh ◽  
Sateesh Kagale ◽  
Lily Tang ◽  
Siu Wah Wu ◽  
...  

Camelina sativa (L.) Crantz an oilseed crop of the Brassicaceae family is gaining attention due to its potential as a source of high value oil for food, feed or fuel. The hexaploid domesticated C. sativa has limited genetic diversity, encouraging the exploration of related species for novel allelic variation for traits of interest. The current study utilized genotyping by sequencing to characterize 193 Camelina accessions belonging to seven different species collected primarily from the Ukrainian-Russian region and Eastern Europe. Population analyses among Camelina accessions with a 2n = 40 karyotype identified three subpopulations, two composed of domesticated C. sativa and one of C. microcarpa species. Winter type Camelina lines were identified as admixtures of C. sativa and C. microcarpa. Eighteen genotypes of related C. microcarpa unexpectedly shared only two subgenomes with C. sativa, suggesting a novel or cryptic sub-species of C. microcarpa with 19 haploid chromosomes. One C. microcarpa accession (2n = 26) was found to comprise the first two subgenomes of C. sativa suggesting a tetraploid structure. The defined chromosome series among C. microcarpa germplasm, including the newly designated C. neglecta diploid née C. microcarpa, suggested an evolutionary trajectory for the formation of the C. sativa hexaploid genome and re-defined the underlying subgenome structure of the reference genome.


Sign in / Sign up

Export Citation Format

Share Document