Material wear map for ground-engaging steels based on scratch tests

Wear ◽  
2018 ◽  
Vol 404-405 ◽  
pp. 153-165 ◽  
Author(s):  
Alireza Ghaderi ◽  
Gourab Saha ◽  
Tingting Guo ◽  
Daniel Fabijanic ◽  
Matthew R. Barnett
Keyword(s):  
Wear Map ◽  
Author(s):  
Юрий Зубарев ◽  
Yuriy Zubarev ◽  
Александр Приемышев ◽  
Alexsandr Priyomyshev

Tool materials used for polymeric composite blank machining, kinds of tool material wear arising at machining these blanks, and also the impact of technological parameters upon tool wear are considered. The obtained results allow estimating the potentialities of physical models at polymeric composite blanks cutting.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 900
Author(s):  
Maria Vardaki ◽  
Aida Pantazi ◽  
Ioana Demetrescu ◽  
Marius Enachescu

In this work we present the results of a functional properties assessment via Atomic Force Microscopy (AFM)-based surface morphology, surface roughness, nano-scratch tests and adhesion force maps of TiZr-based nanotubular structures. The nanostructures have been electrochemically prepared in a glycerin + 15 vol.% H2O + 0.2 M NH4F electrolyte. The AFM topography images confirmed the successful preparation of the nanotubular coatings. The Root Mean Square (RMS) and average (Ra) roughness parameters increased after anodizing, while the mean adhesion force value decreased. The prepared nanocoatings exhibited a smaller mean scratch hardness value compared to the un-coated TiZr. However, the mean hardness (H) values of the coatings highlight their potential in having reliable mechanical resistances, which along with the significant increase of the surface roughness parameters, which could help in improving the osseointegration, and also with the important decrease of the mean adhesion force, which could lead to a reduction in bacterial adhesion, are providing the nanostructures with a great potential to be used as a better alternative for Ti implants in dentistry.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2916
Author(s):  
Ondrej Hanzel ◽  
Zoltán Lenčéš ◽  
Peter Tatarko ◽  
Richard Sedlák ◽  
Ivo Dlouhý ◽  
...  

Three and five-layered silicon carbide-based composites containing 0, 5, and 15 wt.% of graphene nanoplatelets (GNPs) were prepared with the aim to obtain a sufficiently high electrical conductivity in the surface layer suitable for electric discharge machining (EDM). The layer sequence in the asymmetric three-layered composites was SiC/SiC-5GNPs/SiC-15GNPs, while in the symmetric five-layered composite, the order of layers was SiC-15GNPs/SiC-5GNPs/SiC/SiC-5GNPs/SiC-15GNPs. The layered samples were prepared by rapid hot-pressing (RHP) applying various pressures, and it was shown that for the preparation of dense 3- or 5-layered SiC/GNPs composites, at least 30 MPa of the applied load was required during sintering. The electrical conductivity of 3-layered and 5-layered composites increased significantly with increasing sintering pressure when measured on the SiC surface layer containing 15 wt.% of GNPs. The increasing GNPs content had a positive influence on the electrical conductivity of individual layers, while their instrumented hardness and elastic modulus decreased. The scratch tests confirmed that the materials consisted of well-defined layers with straight interfaces without any delamination, which suggests good adhesion between the individual layers.


2012 ◽  
Vol 486 ◽  
pp. 400-405 ◽  
Author(s):  
K. Tuchida ◽  
Kessaraporn Wathanyu ◽  
S. Surinphong

In this paper, the thermal oxidation behavior of TiAlCrSiN and AlCrTiN films coated on hastelloyX substrate, typically used for fuel nozzle in gas turbine engine application, have been studied. The thermal oxidation behavior at 950, 1050 and 1150 °C in controlled atmosphere were investigated. The surface appearance, microstructure, chemical composition and adhesion of films were investigated. The thermal oxidations were observed in all testing conditions showing oxide films at the surface with thicker oxide film at higher temperature. However, spalling of oxide scales was found in both coated and uncoated specimens at 1150°C suggesting the maximum working temperature of < 1150 °C for turbine engine applications. The critical loads corresponding to the full delamination of the thermal oxidation coated specimens were found to be higher than the non-thermal oxidation specimens. The effect of thermal oxidation on damage patterns during scratch tests, i.e. less chipping and cracking for thermal oxidation specimen, were also observed.


2020 ◽  
Vol 2 (1) ◽  
pp. 18
Author(s):  
Sara Ferraris ◽  
Enrica Verné ◽  
Gissur Örlygsson ◽  
Paulo Tambasco ◽  
Felipe Perraro Sehn ◽  
...  

Biomolecules and extracts from natural products are gaining increasing interest due to their beneficial properties for human health, low toxicity, environmental compatibility and sustainability. In this work, keratin, chitosan and peppermint essential oil have been used for the preparation of coatings on titanium substrates for biomedical implants/devices. All these coatings were obtained from local natural products/byproducts: keratin from discarded wool, chitosan from shrimp shells and peppermint essential oils from a local production. The above cited molecules were selected for their ability to stimulate soft tissue adhesion (keratin), anti-inflammatory activity (chitosan) and antibacterial activity (keratin after metal ion doping, chitosan and mint oil). The coatings were characterized by means of SEM-EDS, FTIR, zeta potential, wettability, tape and scratch tests, and cell and bacteria cultures. The coatings were successfully obtained for all the considered natural substances with good adhesion to the titanium substrates. All the coatings are chemically stable in water and the continuous coatings are mechanically resistant and protective for the metallic substrates. The keratin coatings are hydrophilic while the mint oil and chitosan coatings are hydrophobic; nanofibers, instead of continuous coatings, behave as more hydrophobic. At the physiological pH, the keratin and mint oil coatings are negatively charged when in contact with an aqueous environment, while the chitosan ones are positively charged. The oriented keratin fibers are able to drive fibroblast alignment. The Ag-doped keratin fibers and mint coating show antibacterial properties.


1993 ◽  
Vol 115 (4) ◽  
pp. 615-619 ◽  
Author(s):  
M. Nakanishi ◽  
H. Okuya ◽  
K. Nakajima

The strength of deposited film and the adhesion between the film and the substrate were investigated with deposited aluminum oxide film on iron surface by scratching the surface with a diamond cone. Two types of samples were examined, one with oxide film deposited after cleaning the substrate surface by sputter etching, the other with the film deposited without any sputter etching. It was found that a law similar to Meyers’ for indentation hardness holds between the load and scratch width on the sample examined. These results suggest that by analyzing the scratch data the adhesion strength of the film to the substrate can be estimated together with the hardness of the film itself. Analyses by EPMA (electron probe X-ray microanalyzer) and AES (Auger electron spectroscopy) were conducted to correlate the results obtained by the scratch tests and friction experiments, and it was confirmed that (i) adhesion is improved by sputter etching prior to the deposition of the film; (ii) adhesion decreases considerably due to the progress of oxidation in the vicinity of the interface, which depends markedly on the oxygen concentration in the oxide film; and (iii) there is an optimum thickness of the three-component layer (Fe, Al, and O) formed by atomic mixing at the interface for maximizing the adhesion.


2004 ◽  
Vol 126 (2) ◽  
pp. 372-379 ◽  
Author(s):  
J. L. Bucaille ◽  
E. Felder ◽  
G. Hochstetter

An experimental and numerical study of the scratch test on polymers near their surface is presented. The elastoplastic response of three polymers is compared during scratch tests at large deformations: polycarbonate, a thermosetting polymer and a sol-gel hard coating composed of a hybrid matrix (thermosetting polymer-mineral) reinforced with oxide nanoparticles. The experiments were performed using a nanoindenter with a conical diamond tip having an included angle of 30 deg and a spherical radius of 600 nm. The observations obtained revealed that thermosetting polymers have a larger elastic recovery and a higher hardness than polycarbonate. The origin of this difference in scratch resistance was investigated with numerical modelling of the scratch test in three dimensions. Starting from results obtained by Bucaille (J. Mat. Sci., 37, pp. 3999–4011, 2002) using an inverse analysis of the indentation test, the mechanical behavior of polymers is modeled with Young’s modulus for the elastic part and with the G’sell-Jonas’ law with an exponential strain hardening for the viscoplastic part. The strain hardening coefficient is the main characteristic parameter differentiating the three studied polymers. Its value is equal to 0.5, 4.5, and 35, for polycarbonate, the thermosetting polymer and the reinforced thermosetting polymer, respectively. Firstly, simulations reveals that plastic strains are higher in scratch tests than in indentation tests, and that the magnitude of the plastic strains decreases as the strain hardening increases. For scratching on polycarbonate and for a penetration depth of 0.5 μm of the indenter mentioned above, the representative strain is equal to 124%. Secondly, in agreement with experimental results, numerical modeling shows that an increase in the strain hardening coefficient reduces the penetration depth of the indenter into the material and decreases the depth of the residual groove, which means an improvement in the scratch resistance.


2021 ◽  
Vol 885 ◽  
pp. 95-102
Author(s):  
Evgeny A. Belov ◽  
Konstantine V. Nadaraia ◽  
Dmitry V. Mashtalyar ◽  
Igor M. Imshinetsky ◽  
Andrey P. German ◽  
...  

The paper presents results of the composite polymer-containing layers formation by plasma electrolytic oxidation (PEO) with subsequent application of the superdispersed polytetrafluoroethylene (SPTFE) aqueous suspension. The corrosion properties and adhesion of coatings have been investigated using potentiodynamic polarization and scratch tests. Incorporation of SPTFE decreased the corrosion current density for composite layers by more than 3 orders of magnitude in comparison with the base PEO-coating and increased the coatings adhesion by 30 %.


2019 ◽  
Vol 45 (4) ◽  
pp. 4729-4738 ◽  
Author(s):  
Yuanchen Li ◽  
Xiang Ge ◽  
Hui Wang ◽  
Yingbin Hu ◽  
Fuda Ning ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document