Primordium initiation at the shoot apex in four contrasting varieties of spring wheat in response to sowing date

1979 ◽  
Vol 93 (1) ◽  
pp. 203-215 ◽  
Author(s):  
W. R. Stern ◽  
E. J. M. Kirby

SUMMARYThe spring wheat varieties Kolibri, a typical north temperate variety, Pitic 62, a Mexican variety known to respond to vernalization and two selections from the Institute's breeding programme TW 161 and TJB 155 were sown early (2–5 March), during the normal sowing period (27 March) and late (17 April). Primordium initiation was observed until the time of terminal spikelet initiation and the number of leaves and the number of spikelets were analysed in terms of rate and duration of leaf and spikelet primordium initiation. The rate of leaf initiation was affected by time of sowing but not in a systematic way and there were differences between varieties in the way in which the number of leaves changed in response to sowing time. The rate of spikelet initiation increased and the duration decreased with later sowing. There were strong variety × time of sowing interactions. For almost all characters measured, Pitic 62 responded least to time of sowing. Varieties differed in the way in which the number of spikelets per ear responded to time of sowing but in all cases the changes were only small. This waa because the change in the rate of spikelet initiation was almost exactly compensated for by a change in the duration of spikelet initiation. In each variety, the period from terminal spikelet initiation to ear emergence was similar in all sowing treatments and was of similar duration in the main shoot and in the ear-bearing tillers.The number of leaves per shoot on the tillers was less than the number of leaves on the main shoot and the rate of spikelet primordium initiation of the tillers was faster than in the main shoot. These changes tended to synchronize the time of terminal spikelet initiation. Because of the changes in the number of leaves per shoot and the rate of spikelet initiation the number of spikelets borne on the main shoot and the tillers were similar although the growth period of the tillers was shorter than that of the main shoot.

2019 ◽  
pp. 173-182
Author(s):  
Inna Palamarchuk

The results of studies on the dynamics of the formation of the area of leaves of plants of beetroot canteen depending on varietal characteristics and sowing time in the conditions of the Forest-Steppe of Right-Bank Ukraine are presented. The dependence of the growth and development of beetroot plants on varietal characteristics and sowing dates, as well as on weather conditions that were in the studied time, was revealed. The largest number of leaves in the phase of intensive root formation was formed by plants with a sowing period of I decade of May: 13.3 pcs. / plant – Bordo Kharkivskiy, 13.1 pcs. / plant – Opolskiy. The greatest mass of the root crop in the phase of intensive root formation was planted at a sowing period of the third decade of April: the Bordo Kharkivskiy – 72.4 g, the variety Opolskiy – 43.5 g. The same pattern was observed when taking into account the mass of the aerial part of beetroot. In the Bordo Kharkivskiy variety, it varied from 92.4 g to 87.5 g depending on the sowing time, in the Opolskiy variety from 33.7 g to 31.7 g, that is, the beet plants of the Bordo Kharkivskiy cultivar formed a significantly larger mass of the aerial part in comparison with the Opolskiy variety. Plants were sown with the largest leaf area at a sowing period of the 3rd decade of April: in the Bordo Kharkivskiy – 1.2 – 4.0 thousand m2 / ha, in the Opolskiy variety – 1.0 – 2.3 thousand m2 / ha. According to the results of the crop accounting, it was found that it depended on the variety and sowing period of beetroot. On average, over the years of research, the highest yield was observed with a sowing period of the third decade of April: 63.1 t / ha for the Bordo Kharkivskiy variety, 55.9 t / ha for the Opolskiy variety.


2021 ◽  
pp. 48-51
Author(s):  
Yulia Pavlovna Tarasenkova

This article presents the results of a study of spring wheat with the application of biological products. The positive effect of drugs on growth processes and productivity has been established. The conditions of spring wheat cultivation with the use of biologics and their influence on the yield of spring wheat were studied. The purpose of our research was to study the effect of biological preparations on the efficiency of growing spring wheat in light chestnut soils. Results of the presented studies on the impact on yield using growth stimulants and strains: flavobacterin 30, mizorin 7, strain 5S-2, strain 8 on spring wheat varieties: Esther, Lada, Lubava, in the Astrakhan region for 2016-2018. The results showed that when seeds were treated with growth promoters and strains, almost all variants increased their yield.


2017 ◽  
Vol 10 (1) ◽  
pp. 117-124
Author(s):  
SK Mondal ◽  
MM Rahman

The experiment was conducted to find out the morpho-physiological variability in response to different sowing dates in four lines of Quality Protein Maize (QPM) in in the Field Laboratory of the Department of Crop Botany, Bangladesh Agricultural University, Mymensingh. The study was carried out with four lines of maize and two sowing dates, 15 November (T1) and 15 December, ((T2). Sowing date differed significantly in plant height, length of leaf blade, length of leaf sheath, leaf breadth, cob length, cob diameter, length of tassel, days to 50% tasselling, days to 50 % silking, days to maturity, number of cobs per plant, cob weight, number of grain per cob. 1000-seed weight, percent underdeveloped cob, total dry matter and grain yield, but did not differ in number of leaves and protein percent. The lines differed significantly among themselves in those characters except number of leaves per plant, length of leaf sheath, cob length, cob diameter, days to 50% tasselling, number of cobs per plants and number of grain per cob. The line Across 8666 (V2) and (V3) gave the highest grain yield 4.57 and 4.55 and the lowest from (V4) lines 4.41 tons per hectare. The 15 November sowing time (T1) gave the highest grain yield 4.86 tons per hectare. In case of interaction, the earlier planting time (T1) showed better performance with all lines. On the other hand, the highest yield was found from combination of line V2 and V3 with earlier planting time (T1).J. Environ. Sci. & Natural Resources, 10(1): 117-124 2017


1981 ◽  
Vol 96 (3) ◽  
pp. 623-634 ◽  
Author(s):  
Margaret A. Ford ◽  
R. B. Austin ◽  
W. J. Angus ◽  
G. C. M. Sage

SUMMARYThirty-eight spring wheat genotypes of north temperate or low latitude origin, all reasonably well adapted to the English environment, were grown in controlled environments providing the four combinations of 10 and 14 h photoperiods and temperatures of 8 and 16 °C for 6 weeks. They were then transferred to a glasshouse to assess their responses to these treatments. In separate experiments the responses of the genotypes to vernalization for 2 and 4 weeks at 2 and 8 °C were compared with unvernalized controls. The genotypes were also compared in field experiments from early, intermediate or late sowing over 3 years.Both high temperatures and long days hastened ear emergence. At the higher temperature more leaves and spikelets were produced on the main stem while in long days the plants had fewer leaves and spikelets.Most genotypes of north temperate and low latitude origin were responsive to photoperiod but not to the vernalization treatments. As a group, the low latitude ones were as responsive as the north temperate group. Five genotypes of north temperate origin were responsive to vernalization but not to photoperiod and were designated as ‘winter’ ones. Pitic 62 and Hork, from low latitudes, were responsive to vernalization and Hork was unique in also being responsive to photoperiod. The main difference between the north temperate and low latitude genotypes was in time to ear emergence and it is suggested that these differences were due to the effects of earliness genes as distinct from those determining photoperiodic response.Taking all genotypes individually there were no correlations between yield or its sensitivity to sowing date and any of the attributes measured in controlled environments. However, considering class means, the winter genotypes were the latest to reach ear emergence in the field, and their yields, while greatest from the earliest sowings, were proportionally more depressed by late sowing than the others of the north temperate origin. Thus, it may be unwise for plant breeders to incorporate a vernalization response in spring wheat varieties unless genes for ‘earliness’ are also included. The low latitude class gave only slightly lower yields than the north temperate class.It is concluded that genes other than those controlling responses to photoperiod, temperature and vernalization were more important determinants of the differences in yield among this set of genotypes.


Author(s):  
K. V. Mustyatse ◽  
N. S. Chavdar ◽  
O. M. Zagorodnyaya

Carthamus tinctorius L. is a plant, that is used for oil production and dyeing, and also used for medical purposes and cosmetology. A distinctive biological feature of this plant is its high drought resistance. In the process of global warming the increase in air temperature in Transnistria over the past 70 years amounted to 1,2…1,3 °C, the increase in soil temperature over the past 20 years in the observed soil layer 0,2…3,2 m amounted 0,8…1,2 °C. In this regard the intercalation of drought resistant crops, such as Carthamus tinctorius L., into agricultural production is relevant. The dura- tion of the growing season of a Carthamus tinctorius L. collection specimen of unknown origin in the Republican Botanical Garden (in the town of Tiraspol) when sown in middle of April for the period from the year of 2008 to the year of 2017 ranged from 103 to 113 days. In the conditions of Transnistria in the year of 2020 for the first time the influence of sowing time of Carthamus tinctorius L. on the development of a complex of features was studied. Sowing of Carthamus tinctorius was carried out five times: the 20th and the 27th of March, the 3rd and the 14th of April, the 2nd of May. The study of the influence of the sowing time showed decreasing values of the complex of features with later sowing time of Carthamus tinctorius L. The mostly significant decreased with a later sowing time were such features as the number of branches of the first and the second level, the number of seeds in the inflorescence, the number of seeds per plant. The best sowing date in the conditions of an acute drought in the year of 2020 was the first sowing time on the 20th of March. The value of the features in this sowing period was: plants’ height — 55 cm, the number of branches of the first level — 8,7 pieces, the number of branches of the second level — 4,6 pieces, the number of inflorescences per plant — 14,1 pieces, the number of seeds in the inflorescence — 7,0 pieces, the number of seeds per plant — 64,8 pieces.


1985 ◽  
Vol 104 (2) ◽  
pp. 383-396 ◽  
Author(s):  
E. J. M. Kirby ◽  
Margaret Appleyard ◽  
Gwynneth Fellowes

SummaryA number of commercial varieties and advanced breeding lines of wheat and of barley were each sown successively in the field from early in September until late in February in 3 or 2 years. Shoot apex development was monitored throughout the growing season and the dates at which the double ridge stage and the terminal spikelet stage were attained are reported. There was considerable variation in the date at which these stages occurred, associated both with variety and date of sowing. When sown early, spring wheat varieties and the winter wheat, Fenman, developed more rapidly than the other winter wheats, but the difference disappeared in sowings made in the middle of October or later. Spring barley developed more quickly than winter barley and the difference persisted until sowings made in mid-November.Length of the longest leaf sheath, number of emerged leaves on the main shoot and the time when stem elongation began (‘ear at 1 cm’), plant characters used to assess the stage for various agronomic treatments, were measured in parallel with apex development. The relationships between number of emerged leaves and the length of the longest leaf sheath and stage of development were found to vary with sowing date. The stage ‘ear at 1 cm’ provided a good guide to shoot apex development. Stem length and number of elongated internodes varied with date of sowing. Some of the variation in number of emerged leaves at a given stage and in the final number of elongated internodes was found to be correlated with total number of leaves on the main shoot. The form of analysis used indicated that sowing date may have important effects, via its effect on the number of leaves on the main shoot, on the duration of ear growth in wheat and barley and on the duration of ear formation in barley.


2020 ◽  
Vol 15 (2) ◽  
pp. 53-58
Author(s):  
Irina Fadeeva ◽  
Marsel Tagirov ◽  
Ilyas Gazizov ◽  
Fail' Kurmakaev

In 2018-2019 in the Republic of Tatarstan the studies were carried out to study the effect of sowing dates and seeding rates on productuvuty of new varieties of winter wheat to identify the optimal elements of cultivation technology. The experiment scheme provided for the study of the following options: variety (factor A) - Darina, Universiada, Sultan; sowing time (factor B) - September 1 ... 2 (first, optimal), September 15 ... 17 (second); seeding rate (factor C) - 5.0; 5.5; 6.0; 6.5 million viable seeds per hectare. The predecessor is pure steam. Plot area 25 m2. The formation of the grain yield was mainly influenced by the sowing period (28.6%), the choice of the variety (21.2%) and the interaction of the three factors studied (15.8%). Universiada variety formed a yield of 4.91 t/ha during the first sowing period with a pure fallow and a seeding rate of 5.5 million pcs/ha. Sowing after September 15 resulted in a 33.78% decrease in the productivity of this variety. Darina variety formed the highest stand density among all the studied genotypes, both at the first (551.5 pieces/m2) and at the second (476.0 pieces/ m2) sowing dates. The highest grain yield of this variety was noted with the optimal (first) sowing period for pure fallow and the seeding rate of 6.0 million pcs/ha - 4.70 t/ha. A shift in sowing to a later date reduced its yield by 26.48%. Sultan variety formed the highest grain yield when sowing on September 1 ... 2 on a clean fallow with a seeding rate of 6.0 million pcs/ha. With a delay in sowing, like other varieties, the value of this indicator decreased by 24.65%. The analysis of correlations showed the dependence of the yield at the optimal sowing time in a medium degree on the grain size (r = 0.66), with a late one - on the number of productive stems for harvesting (r = 0.56). Key words: winter wheat (Triticum aestivum L.), variety, productivity, yield, grain weight, correlation


Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 507
Author(s):  
Yuxin Dong ◽  
Bingqi Wei ◽  
Lixue Wang ◽  
Yuhan Zhang ◽  
Huaying Zhang ◽  
...  

Growing spring wheat in Inner Mongolia is challenging because of the short growing period, dry-hot winds, and heat-forced maturity. There are also problems with growing winter wheat varieties, such as frost damage, spring droughts, and “late spring cold”. These factors have restricted efforts to increase yields. In order to address these challenges, this study adopted a “spring wheat winter-sowing” planting model for growing wheat in the Hetao Plain Irrigation District in Inner Mongolia and studied wheat varieties with different vernalization requirements through three consecutive field trials. The effects of different sowing dates were analyzed on seed germination and seedling emergence, growth, material accumulation, and yield formation, and the differences were characterized from traditional spring wheat. The results indicated that delaying the sowing date increased the spring emergence rate of the wheat varieties. The winter-seeded spring wheat germinated and ripened after three and seven days, respectively, earlier than the spring-seeded. The grain yield for the winter-seeded wheat was parallel to the spring-seeded wheat. Compared with the spring-seeded wheat, the winter-seeded wheat displayed less panicles, but greater grains per spike, and a 1000-grain weight. When seeded in winter, Yongliang 4 performed better than Ningdong 11 and Henong 7106 in terms of the emergence rate, material accumulation, and grain yield. The best seeding time for the winter-seeded spring wheat in the Hetao Irrigation District of Inner Mongolia is early November.


MAUSAM ◽  
2021 ◽  
Vol 67 (3) ◽  
pp. 677-682
Author(s):  
J. L. CHAUDHARY ◽  
S. R. PATEL ◽  
N. MANIKANDAN ◽  
RAJESH KHAVSE ◽  
P. K. VERMA

Field experiment was conducted during Rabi seasons of 2010-11, 2011-12 and 2012-13 at Research and Instructional Farm of Indira Gandhi Krishi Vishwavidyalaya, Raipur to examine and study the phenology, accumulation of growing degree days (GDD), heliothermal units (HTU), photothermal unit (PTU) and performance of wheat (Triticum aestivam L.) of four wheat varieties grown under five different sowing dates in factorial Randomized Block Design. It was observed that GDDs got reduced significantly with subsequent delay in sowing time. For our study purpose and as per package of practices, 25 November D1 can be taken as early sowing and D2 - 5 December as timely sowing conditions.  The wheat varieties Amar and Sujata took highest GDD, HTU and PTU to maturity.  On the mean basis the variety Kanchan produced highest grain yield (3147 kg/ha) followed by GW-273 (2947 kg/ha).  The significant reduction in grain yield was recorded when sowing was delayed beyond D2 - December 05.  Among the wheat varieties Kanchan showed better performance in terms of RUE followed by GW-273 and Sujata. Highest HUE was observed in wheat variety Kanchan followed by Sujata and GW-273. Varieties giving higher yield, RUE and HUE are identified under varying growing environments so as to suggest the appropriate sowing dates of wheat varieties in Chhattisgarh plains. GDD is giving consistent results as its variability is least varying between 3.4-5.3 per cent for different varieties and therefore it is reliable index for studying environmental effects on wheat in this region. Lowest RUE was observed under 5 January sowing (D5) in the all varieties which leads to conclusion that this sowing date must be avoided and wheat crop sowing must be completed latest by 25 December to avoid adverse effects on productivity.       


2020 ◽  
Vol 5 (1) ◽  
pp. 5
Author(s):  
Mujeeb Ur Rehman ◽  
Muhammad Jamal Khan ◽  
Mujib Ur Rehman ◽  
Hanif Khan ◽  
Ihsan Muhammad ◽  
...  

The current study was conducted the effect of sowing time and different doses of a potassium supplement on yield attributes of potato at Gollen valley Chitral, the Northern Pakistan during summer 2018. Sowing Potato (cv. Roko) commenced from 5thMay and continued till 5thJune keeping an interval of 15 days among sowing times. Potassium (K) was applied at the rate of 100, 150, 200 and 250 kg ha-1 as potassium chloride. Basal doses of nitrogen (N) and phosphorus (P) were applied at the rate 120 and 100 kg ha-1 respectively, as urea and DAP. All yield attributes like number of leaves per plant, plant height, the number of tubers per plant, tuber volume and yield of potato were higher for May 5th (early sowing date) with potassium dose of 200 kg ha-1. Interaction of sowing dates and Potassium (SD×K) for yield, tuber volume and soil potassium content was statistically significant (P≤0.05). The study showed that by delaying the sowing season, yield traits and yield of potato decreased significantly; hence early cultivation and K fertilization of 200 kg ha-1 resulted in maximum production of potato as well as improved soil properties under agroclimatic conditions of the region which is a dry temperate zone of Pakistan


Sign in / Sign up

Export Citation Format

Share Document