Sugarbeet (Beta vulgaris) response to residual soil N under Mediterranean agronomic practices

1999 ◽  
Vol 132 (3) ◽  
pp. 273-280 ◽  
Author(s):  
P. MARTÍN-OLMEDO ◽  
J. M. MURILLO ◽  
F. CABRERA ◽  
R. LÓPEZ

Autumn-sown sugarbeet (Beta vulgaris L.) responses (sugar yield, plant N-uptake and juice quality) were studied in relation to the residual NO3−-N in a soil of southwestern Spain which, for the previous five years (1989–93), had received high N rates, in accordance with conventional fertilization schedules used by farmers in the area. Three different combinations of fertilizers, supplying equal amounts of N, were used during the fertilization period (1989–93): a mineral fertilization treatment (MF, a complex 15N-15P2O5-15K2O) and two organo-mineral fertilization treatments (an olive mill wastewater sludge compost, AC, and a depotassified concentrated beet vinasse, V). All these treatments also received a top-dressing with urea (46% N). A control treatment (C), without fertilization was included for comparison.During the major part of the beet growing season, the presence of almost four times as much mineral N in the 0·100 cm soil layer of previously fertilized plots (AC, V and MF) than in the unfertilized one (C), led to a significant increase (P<0·05) in total fresh weight yield and N-uptake, but also to a significant decrease (P<0·05) in sugar content and beet processing quality. The time course of NO3−-N concentration in sugarbeet petioles and the evolution of the nutritional state of leaf-blades gave advance information about the final response of the crop to the different fertilization treatments. Besides N, Na was the element which, due to the repeated and high fertilization rates applied, had a major effect in reducing the technological quality of the sugarbeet.

2002 ◽  
Vol 12 (2) ◽  
pp. 250-256 ◽  
Author(s):  
Hudson Minshew ◽  
John Selker ◽  
Delbert Hemphill ◽  
Richard P. Dick

Predicting leaching of residual soil nitrate-nitrogen (NO3-N) in wet climates is important for reducing risks of groundwater contamination and conserving soil N. The goal of this research was to determine the potential to use easily measurable or readily available soilclimatic-plant data that could be put into simple computer models and used to predict NO3 leaching under various management systems. Two computer programs were compared for their potential to predict monthly NO3-N leaching losses in western Oregon vegetable systems with or without cover crops. The models were a statistical multiple linear regression (MLR) model and the commercially available Nitrate Leaching and Economical Analysis Package model (NLEAP 1.13). The best MLR model found using stepwise regression to predict annual leachate NO3-N had four independent variables (log transformed fall soil NO3-N, leachate volume, summer crop N uptake, and N fertilizer rate) (P < 0.001, R2 = 0.57). Comparisons were made between NLEAP and field data for mass of NO3-N leached between the months of September and May from 1992 to 1997. Predictions with NLEAP showed greater correlation to observed data during high-rainfall years compared to dry or averagerainfall years. The model was found to be sensitive to yield estimates, but vegetation management choices were limiting for vegetable crops and for systems that included a cover crop.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1482
Author(s):  
Silvia Pampana ◽  
Alessandro Rossi ◽  
Iduna Arduini

Winter cereals are excellent candidates for biosolid application because their nitrogen (N) requirement is high, they are broadly cultivated, and their deep root system efficiently takes up mineral N. However, potential N leaching from BS application can occur in Mediterranean soils. A two-year study was conducted to determine how biosolids affect biomass and grain yield as well as N uptake and N leaching in barley (Hordeum vulgare L.), common wheat (Triticum aestivum L.), durum wheat (Triticum turgidum L. var. durum), and oat (Avena byzantina C. Koch). Cereals were fertilized at rates of 5, 10, and 15 Mg ha−1 dry weight (called B5, B10, and B15, respectively) of biosolids (BS). Mineral-fertilized (MF) and unfertilized (C) controls were included. Overall, results highlight that BS are valuable fertilizers for winter cereals as these showed higher yields with BS as compared to control. Nevertheless, whether 5 Mg ha−1 of biosolids could replace mineral fertilization still depended on the particular cereal due to the different yield physiology of the crops. Moreover, nitrate leaching from B5 was comparable to MF, and B15 increased the risk by less than 30 N-NO3 kg ha−1. We therefore concluded that with specific rate settings, biosolid application can sustain yields of winter cereals without significant additional N leaching as compared to MF.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hongyi Zhao ◽  
Juelan Guan ◽  
Qing Liang ◽  
Xueyuan Zhang ◽  
Hongling Hu ◽  
...  

AbstractThe effects of cadmium stress on the growth and physiological characteristics of Sassafras tzumu Hemsl. were studied in pot experiments. Five Cd levels were tested [CT(Control Treatment) : 0 mg/kg, Cd5: 5 mg/kg, Cd20: 20 mg/kg, Cd50: 50 mg/kg, and Cd100: 100 mg/kg]. The growth and physiological characteristics of the sassafras seedlings in each level were measured. The results showed that soil Cd had negative influences on sassafras growth and reduced the net growth of plant height and the biomass of leaf, branch and root. Significant reductions were recorded in root biomass by 18.18%(Cd5), 27.35%(Cd20), 27.57%(Cd50) and 28.95%(Cd100). The contents of hydrogen peroxide decreased first then increased while malondialdehyde showed the opposite trend with increasing cadmium concentration. Decreases were found in hydrogen peroxide contents by 10.96%(Cd5), 11.82%(Cd20) and 7.02%(Cd50); increases were found in malondialdehyde contents by 15.47%(Cd5), 16.07%(Cd20) and 7.85%(Cd50), indicating that cadmium stress had a certain effect on the peroxidation of the inner cell membranes in the seedlings that resulted in damage to the cell membrane structure. Superoxide dismutase activity decreased among treatments by 17.05%(Cd5), 10,68%(Cd20), 20.85%(Cd50) and 8.91%(Cd100), while peroxidase activity increased steadily with increasing cadmium concentration; these results suggest that peroxidase is likely the main protective enzyme involved in the reactive oxygen removal system in sassafras seedlings. Upward trends were observed in proline content by 90.76%(Cd5), 74.36%(Cd20), 99.73%(Cd50) and 126.01%(Cd100). The increase in proline content with increasing cadmium concentration indicated that cadmium stress induced proline synthesis to resist osmotic stress in the seedlings. Compared to that in CT, the soluble sugar content declined under the different treatments by 32.84%(Cd5), 5.85%(Cd20), 25.55%(Cd50) and 38.69%(Cd100). Increases were observed in the soluble protein content by 2.34%(Cd5), 21.36%(Cd20), 53.15%(Cd50) and 24.22%(Cd100). At different levels of cadmium stress, the chlorophyll content in the seedlings first increased and then decreased, and it was higher in the Cd5 and Cd20 treatments than that in the CT treatment. These results reflected that cadmium had photosynthesis-promoting effects at low concentrations and photosynthesis-suppressing effects at high concentrations. The photosynthetic gas exchange parameters and photosynthetic light-response parameters showed downward trends with increasing cadmium concentration compared with those in CT; these results reflected the negative effects of cadmium stress on photosynthesis in sassafras seedlings.


FLORESTA ◽  
2019 ◽  
Vol 49 (3) ◽  
pp. 485
Author(s):  
Lívia Mara Lima Goulart ◽  
Marianne Fidalgo de Faria ◽  
Grasiela Spada ◽  
Thiago Tássio de Souza Silva ◽  
Iraê Amaral Guerrini

The use of sewage sludge in agriculture and recovery of degraded areas has been shown as a promising alternative for its final destination. Studies on micronutrient levels after sludge application are necessary to avoid soil contamination at toxic levels. The objective of this work was to verify the micronutrient contents in the soil profile and pH, up to one-meter-deep, nine years after the application of sewage sludge and planting of native species of the Atlantic Forest. The experiment was implemented in a degraded Quartzeneic Neosol and conducted in randomized blocks with four replicates and eight treatments, consisting of six doses of sewage sludge (0, 2.5, 5, 10, 15 and 20 Mg ha-1, with supplementation of potassium due to low concentration in the residue), besides the control treatment, mineral fertilization and only potassium supplementation. After nine years, the contents of all micronutrients evaluated presented a significant response to the application of the treatments, and the application of sewage sludge provided an increase in their contents. Soil pH remained stable at sites receiving mineral fertilization and potassium supplementation. Only manganese and zinc showed mobility in the soil profile. The application of sewage sludge in degraded soil increases the micronutrient content and decreases its movement in the soil profile, and the application of the maximum dose of the residue does not provide toxic levels of these elements in the soil in the long term.


2021 ◽  
Author(s):  
Xue Li ◽  
Qiuxiang Wen ◽  
Shiyu Zhang ◽  
Na Li ◽  
Jinfeng Yang ◽  
...  

Abstract Aims The objectives of this study were to examine the long-term substitution of mineral phosphorus (P) fertilizers with manure (M) plus nitrogen (N) fertilizers and how they affect the forms of P that occur in soil, soil P distribution, and plant growth.Methods We used a solution of 31P nuclear magnetic resonance (31P-NMR) spectroscopy to study the correlations between long-term fertilization regimes and the forms of P that occur at different soil depths. Then we investigated yield, plant growth, and soil properties.Results A 40-year field experiment showed that the use of M + N fertilizers can significantly improve plant growth and yield. The proportion of organic P in the 20-40 cm soil layer was significantly increased by long-term M fertilization. The concentrations of various forms of P (orthophosphate, pyrophosphate, diesters, monoesters, and total inositol hexakisphosphate, IHP) in topsoil increased significantly with the combination of M with N + P mineral fertilization. The addition of M greatly increased the stereoisomers of IHP (myo-IHP, scyllo-IHP, neo-IHP, and D-chiro-IHP) and the proportion and concentration of corrected diesters. There were no significant differences in the pyrophosphate contents of the 40-60 cm soil layer according to fertilization type and year of fertilization. There were also no significant differences in IHP stereoisomers and diesters according to fertilization year. The P forms that contributed to corn yield were orthophosphate, diester, and IHP. Further, pyrophosphate made no significant contribution to corn growth. Conclusions Over the long-term, pig manure can significantly increase the amount of orthophosphate that is directly absorbed by crops and the amount of IHP stereoisomers that can be used by plants. Orthophosphate and IHP are the two key factors that have a positive effect on plant growth.


2010 ◽  
Vol 67 (4) ◽  
pp. 424-429 ◽  
Author(s):  
Ersin Polat ◽  
Halil Demir ◽  
Fedai Erler

The term 'organically grown food' denotes products that have been produced in accordance with the principles and practices of organic agriculture. The use of alternatives to synthetic fertilizers is an important issue in organic systems. A two-year field experiment to evaluate effects of organic fertilizers on the yield and quality of open field grown tomatoes (Lycopersicon esculentum Mill.) was carried out in Southern Turkey in 2000 and 2001. Combinations of manure, blood flour and micronutrient preparations were used for fertilization, and conventional mineral fertilization was included as the control. Yield did not differ between the fertilization and the Conventional treatments in the first year of the study, but the highest yield was obtained from conventional in the second year. No differences were found between treatments in terms of fruit soluble sugar content or citric acid. The application of organic fertilizers positively affected the micronutritional element content of tomato fruits compared to the conventional treatment. Organic fertilization results in improved yield and fruit quality compared to conventional fertilization. In addition, organic fertilization should be supported in order to facilitate reuse and disposal of organic wastes and to maintain and/or increase soil fertility.


Author(s):  
E. S. Salina

Tis study presents the sensory and biochemical traits of mono-varietal juices from columnar apple fruits grown in the Orel Region. Fruit juices from the cultivars Valuta, Zvezda Efira, Orlovskaya Eseniya and Priokskoye have been assessed against the Antonovka Obyknovennaya juice as control. We used the emerging sensory scales and dictionaries to develop a sensory panel for the apple juice evaluation and analysed its main biochemical criteria. Te top descriptors in a five-point rating were used to develop the colour, flavour and aroma scales for a quick juice quality evaluation, with suitable descriptors for each sensory level. Analyses of sensory data showed more expert discrimination of flavour than aroma. Te cultivars were divided into three groups in terms of juice quality: transparent without opalescence (Zvezda Efira, Valuta), almost opaque with marked opalescence (Orlovskaya Eseniya, Antonovka Obyknovennaya) and medium-transparent juice with slight opalescence (Priokskoye). Zvezda Efira and Antonovka Obyknovennaya were more sour and tart, while the Valuta and Priokskoye varieties were the sweetest. Orlovskaya Eseniya had a balanced sweet-sour and least tart juice. A correlation has been determined between the point and descriptor scorings of apple juices, as well as between the flavour and biochemical indices. Te sensory panel developed identified the best sensory qualities of apple juice as high transparency, absent opalescence, intense straw-yellow colour, sour-sweet rich flavour and distinct apple aroma. Te most flavour-affecting biochemical indices were the sugar content (°Brix), sugar-acid ratio and P-active catechin amount. Te point and descriptive scorings produce fully accordant results. A descriptive analysis is industry-preferred for allowing a rapid assessment of various product characteristics and their adjustment upon need.


AGROFOR ◽  
2018 ◽  
Vol 3 (1) ◽  
Author(s):  
S.F. EL-SAYED ◽  
A.A. GAHRIB ◽  
Rasha R. EID

This investigation was carried out during the two summer seasons of 2015 and2016 in sandy soil on potato culitvar "Sante" to study the effect of using 100%compost (15 t/fed.) and 50% compost + nitrogen fixing bacteria (Azotobacter, andPseudomonas alone or together) on potato yield and quality as compared to theconventional mineral fertilization (120-75-150 kg/fed. NPK + 5 toncompost/fed.(control)). No significant differences in tubers yield/fed. were detectedbetween mineral fertilization (control) and using 100% compost (15t/fed).However, control treatment significantly produced a high yield per feddan,more than using 50% compost + any biofertilizer treatment.Using composttreatment at 15 t/fed.execeed all biofertilizer treatments in marketable yield in bothseasons, but without significant differences as compared with mineral fertilization(control).No significant differences in tuber dray matter and content of starch intuber were found between using compost treatment at 15 ton/fed. and mineralfertilization treatment (control)in both seasons. Nevertheless, application of 50%compost+ 4 applications of Azotobacter and Pseudomonas had the highest tuberconcentrations of starch and nitrogen with significant differences as compared withthe mineral fertilization.Using50% compost + 4 applications of Azotobacter orPseudomonas or both (Azotobacter + Pseudomonas )and application of 100%compost caused producing potato tubers with the lowest concentration of nitratewith significant differences as compared with the mineral fertilization. Nosignificant differences were detected between mineral and organic fertilizersconcerning P and K concentrations in tubers.


2019 ◽  
Vol 15 (10) ◽  
pp. 20190642 ◽  
Author(s):  
Thomas Ede ◽  
Marina A. G. von Keyserlingk ◽  
Daniel M. Weary

Pain in animals is typically assessed using reflexive and physiological responses. These measures allow inferences regarding nociception but provide little basis for conclusions about the affective component of pain (i.e. how negatively the experience is perceived). Calves routinely undergo painful procedures on commercial farms, including hot-iron disbudding, providing a convenient model to study pain in animals. The aim of this study was to investigate the affective component of post-procedural pain due to hot-iron disbudding, using conditioned place aversion. Calves ( n = 31) were subjected to two procedures (one bud at a time): one without post-procedural pain control and the other with the use of a nonsteroidal anti-inflammatory drug (either meloxicam ( n = 16) or ketoprofen ( n = 15)). All procedures included the use of local anaesthesia (lidocaine). Place conditioning was tested 2 days after the last treatment by allowing calves to freely roam between the pens where they had previously been disbudded. Calves spent more time, and lay down more frequently, in the pen where they received meloxicam compared with the pen where they only received a local block. Surprisingly, calves avoided the pen where they received ketoprofen compared with the control treatment pen. We hypothesize that the shorter duration of action of ketoprofen resulted in increasing pain at the end of the conditioning period, explaining the increased aversion to this treatment. These results illustrate the value of place conditioning paradigms to assess the affective component of pain in animals, and suggest that the animal's evaluation of painful events depends upon the time course of when the pain is experienced.


Sign in / Sign up

Export Citation Format

Share Document