The Expression Patterns of Semaphorin Genes 3b, 4a, 4f, and 6c in the Lymphoid Tissue of Mice Found Through in Situ Hybridization

2001 ◽  
Vol 7 (S2) ◽  
pp. 446-447
Author(s):  
Sayeh Beheshti ◽  
David Matthes

The semaphorin family consists of a set of secreted and transmembrane proteins which contain a domain of approximately 500 amino acids called the semaphorin domain. The investigation of the role of semaphorin proteins in the nervous system has established them as chemorepellents of axons. Recent studies have identified the semaphorin proteins on the surface of cells in the immune system and in the genomes of two lytic viruses. These strongly suggest the possible involvement of the semaphorin proteins in the immune system. This study aims to understand the expression patterns of four semaphorin genes, Sema3B, Sema4A, Sema4F, and Sema6C in the lymphoid tissues of wild type mice. These proteins were chosen to represent the three subfamilies III, IV, and VI. The first family contains secreted proteins which have immunoglobulin domains (III), the second contains transmembrane proteins which have immunoglobulin domains (IV), and the third contains transmembrane proteins which do not have immunoglobulin domains (VI).

2020 ◽  
Author(s):  
Tong Zhao ◽  
Alma Piñeyro-Nelson ◽  
Qianxia Yu ◽  
Xiaoying Hu ◽  
Huanfang Liu ◽  
...  

Abstract Background:The flower of Hedychium coronarium possesses highly specialized floral organs: a synsepalous calyx, petaloid staminodes and a labellum. The formation of these organs is controlled by two gene categories: floral organ identity genes and organ boundary genes, which may function individually or jointly during flower development. Although the floral organogenesis of H. coronarium has been studied at the morphological level, the underlying molecular mechanisms involved in its floral development still remain poorly understood. In addition, previous works analyzing the role of MADS-box genes in controlling floral organ specification in some Zingiberaceae did not address the molecular mechanisms involved in the formation of particular organ morphologies that emerge later in flower development, such as the synsepalous calyx formed through intercalary growth of adjacent sepals. Results:Here, we used comparative transcriptomics combined with Real-time quantitative PCR and mRNA in situ hybridization to investigate gene expression patterns of ABC-class genes in H. coronarium flowers, as well as the homolog of the organ boundary gene PETAL LOSS (HcPTL). qRT-PCR detection showed that HcAP3 and HcAG were expressed in both the petaloid staminode and the fertile stamen. mRNA in situ hybridization showed that HcPTL was expressed in developing meristems, including cincinnus primordia, floral primordia, common primordia and almost all new initiating floral organ primordia.Conclusions:Our studies found that stamen/petal identity or stamen fertility in H. coronarium was not necessarily correlated with the differential expression of HcAP3 and HcAG. We also found a novel spatio-temporal expression pattern for HcPTL mRNA, suggesting it may have evolved a lineage-specific role in the morphogenesis of the Hedychium flower. Our study provides a new transcriptome reference and a functional hypothesis regarding the role of a boundary gene in organ fusion that should be further addressed through phylogenetic analyzes of this gene, as well as functional studies.


Development ◽  
2002 ◽  
Vol 129 (6) ◽  
pp. 1327-1338 ◽  
Author(s):  
Masanori Takahashi ◽  
Noriko Osumi

Recent studies have shown that generation of different kinds of neurones is controlled by combinatorial actions of homeodomain (HD) proteins expressed in the neuronal progenitors. Pax6 is a HD protein that has previously been shown to be involved in the differentiation of the hindbrain somatic (SM) motoneurones and V1 interneurones in the hindbrain and/or spinal cord. To investigate in greater depth the role of Pax6 in generation of the ventral neurones, we first examined the expression patterns of HD protein genes and subtype-specific neuronal markers in the hindbrain of the Pax6 homozygous mutant rat. We found that Islet2 (SM neurone marker) and En1 (V1 interneurone marker) were transiently expressed in a small number of cells, indicating that Pax6 is not directly required for specification of these neurones. We also observed that domains of all other HD protein genes (Nkx2.2, Nkx6.1, Irx3, Dbx2 and Dbx1) were shifted and their boundaries became blurred. Thus, Pax6 is required for establishment of the progenitor domains of the ventral neurones. Next, we performed Pax6 overexpression experiments by electroporating rat embryos in whole embryo culture. Pax6 overexpression in the wild type decreased expression of Nkx2.2, but ectopically increased expression of Irx3, Dbx1 and Dbx2. Moreover, electroporation of Pax6 into the Pax6 mutant hindbrain rescued the development of Islet2-positive and En1-positive neurones. To know reasons for perturbed progenitor domain formation in Pax6 mutant, we examined expression patterns of Shh signalling molecules and states of cell death and cell proliferation. Shh was similarly expressed in the floor plate of the mutant hindbrain, while the expressions of Ptc1, Gli1 and Gli2 were altered only in the progenitor domains for the motoneurones. The position and number of TUNEL-positive cells were unchanged in the Pax6 mutant. Although the proportion of cells that were BrdU-positive slightly increased in the mutant, there was no relationship with specific progenitor domains. Taken together, we conclude that Pax6 regulates specification of the ventral neurone subtypes by establishing the correct progenitor domains.


2020 ◽  
Vol 11 ◽  
Author(s):  
Qianxia Yu ◽  
Xueyi Tian ◽  
Canjia Lin ◽  
Chelsea D. Specht ◽  
Jingping Liao

The asymmetric flower, lacking any plane of symmetry, is rare among angiosperms. Canna indica L. has conspicuously asymmetric flowers resulting from the presence of a half-fertile stamen, while the other androecial members develop as petaloid staminodes or abort early during development. The molecular basis of the asymmetric distribution of fertility and petaloidy in the androecial whorls remains unknown. Ontogenetic studies have shown that Canna flowers are borne on monochasial (cincinnus) partial florescences within a racemose inflorescence, with floral asymmetry likely corresponding to the inflorescence architecture. Given the hypothesized role of CYC/TB1 genes in establishing floral symmetry in response to the influence of the underlying inflorescence architecture, the spatiotemporal expression patterns of three Canna CYC/TB1 homologs (CiTBL1a, CiTBL1b-1, and CiTBL1b-2) were analyzed during inflorescence and floral development using RNA in situ hybridization and qRT-PCR. In the young inflorescence, both CiTBL1a and CiTBL1b-1 were found to be expressed in the bracts and at the base of the lateral florescence branches, whereas transcripts of CiTBL1b-2 were mainly detected in flower primordia and inflorescence primordia. During early flower development, expression of CiTBL1a and CiTBL1b-1 were both restricted to the developing sepals and petals. In later flower development, expression of CiTBL1a was reduced to a very low level while CiTBL1b-1 was detected with extremely high expression levels in the petaloid androecial structures including the petaloid staminodes, the labellum, and the petaloid appendage of the fertile stamen. In contrast, expression of CiTBL1b-2 was strongest in the fertile stamen throughout flower development, from early initiation of the stamen primordium to maturity of the ½ anther. Heterologous overexpression of CiTBL genes in Arabidopsis led to dwarf plants with smaller petals and fewer stamens, and altered the symmetry of mature flowers. These data provide evidence for the involvement of CYC/TB1 homologs in the development of the asymmetric Cannaceae flower.


2020 ◽  
Vol 21 (23) ◽  
pp. 9015
Author(s):  
Daniel Janitschke ◽  
Anna A. Lauer ◽  
Cornel M. Bachmann ◽  
Martin Seyfried ◽  
Heike S. Grimm ◽  
...  

Methylxanthines are a group of substances derived from the purine base xanthine with a methyl group at the nitrogen on position 3 and different residues at the nitrogen on position 1 and 7. They are widely consumed in nutrition and used as pharmaceuticals. Here we investigate the transcriptional regulation of 83 genes linked to Alzheimer’s disease in the presence of five methylxanthines, including the most prominent naturally occurring methylxanthines—caffeine, theophylline and theobromine—and the synthetic methylxanthines pentoxifylline and propentofylline. Methylxanthine-regulated genes were found in pathways involved in processes including oxidative stress, lipid homeostasis, signal transduction, transcriptional regulation, as well as pathways involved in neuronal function. Interestingly, multivariate analysis revealed different or inverse effects on gene regulation for caffeine compared to the other methylxanthines, which was further substantiated by multiple comparison analysis, pointing out a distinct role for caffeine in gene regulation. Our results not only underline the beneficial effects of methylxanthines in the regulation of genes in neuroblastoma wild-type cells linked to neurodegenerative diseases in general, but also demonstrate that individual methylxanthines like caffeine mediate unique or inverse expression patterns. This suggests that the replacement of single methylxanthines by others could result in unexpected effects, which could not be anticipated by the comparison to other substances in this substance class.


1999 ◽  
Vol 277 (2) ◽  
pp. F298-F302 ◽  
Author(s):  
Tong Wang ◽  
Chao-Ling Yang ◽  
Thecla Abbiati ◽  
Patrick J. Schultheis ◽  
Gary E. Shull ◽  
...  

NHE3 is the predominant isoform responsible for apical membrane Na+/H+exchange in the proximal tubule. Deletion of NHE3 by gene targeting results in an NHE3−/−mouse with greatly reduced proximal tubule[Formula: see text] absorption compared with NHE3+/+ animals (P. J. Schultheis, L. L. Clarke, P. Meneton, M. L. Miller, M. Soleimani, L. R. Gawenis, T. M. Riddle, J. J. Duffy, T. Doetschman, T. Wang, G. Giebisch, P. S. Aronson, J. N. Lorenz, and G. E. Shull. Nature Genet. 19: 282–285, 1998). The purpose of the present study was to evaluate the role of other acidification mechanisms in mediating the remaining component of proximal tubule [Formula: see text] reabsorption in NHE3−/− mice. Proximal tubule transport was studied by in situ microperfusion. Net rates of[Formula: see text] ( J HCO3) and fluid absorption ( J v) were reduced by 54 and 63%, respectively, in NHE3 null mice compared with controls. Addition of 100 μM ethylisopropylamiloride (EIPA) to the luminal perfusate caused significant inhibition of J HCO3 and J v in NHE3+/+ mice but failed to inhibit J HCO3 or J v in NHE3−/− mice, indicating lack of activity of NHE2 or other EIPA-sensitive NHE isoforms in the null mice. Addition of 1 μM bafilomycin caused a similar absolute decrement in J HCO3 in wild-type and NHE3 null mice, indicating equivalent rates of[Formula: see text] absorption mediated by H+-ATPase. Addition of 10 μM Sch-28080 did not reduce J HCO3 in either wild-type or NHE3 null mice, indicating lack of detectable H+-K+-ATPase activity in the proximal tubule. We conclude that, in the absence of NHE3, neither NHE2 nor any other EIPA-sensitive NHE isoform contributes to mediating [Formula: see text] reabsorption in the proximal tubule. A significant component of[Formula: see text] reabsorption in the proximal tubule is mediated by bafilomycin-sensitive H+-ATPase, but its activity is not significantly upregulated in NHE3 null mice.


Database ◽  
2020 ◽  
Vol 2020 ◽  
Author(s):  
Jong-Heon Kim ◽  
Su-Hyeong Park ◽  
Jin Han ◽  
Pan-Woo Ko ◽  
Dongseop Kwon ◽  
...  

Abstract Glial cells are phenotypically heterogeneous non-neuronal components of the central and peripheral nervous systems. These cells are endowed with diverse functions and molecular machineries to detect and regulate neuronal or their own activities by various secreted mediators, such as proteinaceous factors. In particular, glia-secreted proteins form a basis of a complex network of glia–neuron or glia–glia interactions in health and diseases. In recent years, the analysis and profiling of glial secretomes have raised new expectations for the diagnosis and treatment of neurological disorders due to the vital role of glia in numerous physiological or pathological processes of the nervous system. However, there is no online database of glia-secreted proteins available to facilitate glial research. Here, we developed a user-friendly ‘Gliome’ database (available at www.gliome.org), a web-based tool to access and analyze glia-secreted proteins. The database provides a vast collection of information on 3293 proteins that are released from glia of multiple species and have been reported to have differential functions under diverse experimental conditions. It contains a web-based interface with the following four key features regarding glia-secreted proteins: (i) fundamental information, such as signal peptide, SecretomeP value, functions and Gene Ontology category; (ii) differential expression patterns under distinct experimental conditions; (iii) disease association; and (iv) interacting proteins. In conclusion, the Gliome database is a comprehensive web-based tool to access and analyze glia-secretome data obtained from diverse experimental settings, whereby it may facilitate the integration of bioinformatics into glial research.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Monica C. Gestal ◽  
Laura K. Howard ◽  
Kalyan Dewan ◽  
Hannah M. Johnson ◽  
Mariette Barbier ◽  
...  

AbstractWell-adapted pathogens must evade clearance by the host immune system and the study of how they do this has revealed myriad complex strategies and mechanisms. Classical bordetellae are very closely related subspecies that are known to modulate adaptive immunity in a variety of ways, permitting them to either persist for life or repeatedly infect the same host. Exploring the hypothesis that exposure to immune cells would cause bordetellae to induce expression of important immunomodulatory mechanisms, we identified a putative regulator of an immunomodulatory pathway. The deletion of btrS in B. bronchiseptica did not affect colonization or initial growth in the respiratory tract of mice, its natural host, but did increase activation of the inflammasome pathway, and recruitment of inflammatory cells. The mutant lacking btrS recruited many more B and T cells into the lungs, where they rapidly formed highly organized and distinctive Bronchial Associated Lymphoid Tissue (BALT) not induced by any wild type Bordetella species, and a much more rapid and strong antibody response than observed with any of these species. Immunity induced by the mutant was measurably more robust in all respiratory organs, providing completely sterilizing immunity that protected against challenge infections for many months. Moreover, the mutant induced sterilizing immunity against infection with other classical bordetellae, including B. pertussis and B. parapertussis, something the current vaccines do not provide. These findings reveal profound immunomodulation by bordetellae and demonstrate that by disrupting it much more robust protective immunity can be generated, providing a pathway to greatly improve vaccines and preventive treatments against these important pathogens.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 77-77
Author(s):  
Hong Xu ◽  
Jun Yan ◽  
Ziqiang Zhu ◽  
Yiming Huang ◽  
Yujie Wen ◽  
...  

Abstract Abstract 77 Adaptive immunity, especially T cells, has long been believed to be the dominant immune barrier in allogeneic transplantation. Targeting host T cells significantly reduces conditioning for bone marrow cell (BMC) engraftment. Innate immunity has been recently shown to pose a significant barrier in solid organ transplantation, but has not been addressed in bone marrow transplantation (BMT). Using T cell deficient (TCR-β/δ−/−) or T and B cell deficient (Rag−/−) mice, we found that allogeneic BMC rejection occurred early before the time required for T cell activation and was T- and B-cell independent, suggesting an effector role for innate immune cells in BMC rejection. Therefore, we hypothesized that by controlling both innate and adaptive immunity, the donor BMC would have a window of advantage to engraft. Survival of BMC in vivo was significantly improved by depleting recipient macrophages and/or NK cells, but not neutrophils. Moreover, depletion of macrophages and NK cells in combination with co-stimulatory blockade with anti-CD154 and rapamycin as a novel form of conditioning resulted in 100% allogeneic engraftment without any irradiation and T cell depletion. Donor chimerism remained stable and durable up to 6 months. Moreover, specific Vβ5½ and Vβ11 clonal deletion was detected in host CD4+ T cells in chimeras, indicating central tolerance to donor alloantigens. Whether and how the innate immune system recognizes or responds to allogeneic BMCs remains unknown. Toll-like receptors (TLRs) are a class of proteins that play a key role in the innate immune system. The signaling function of TLR depends on intracellular adaptors. The adaptor MyD88 transmits signals emanating from all TLR, except TLR3 while TRIF specifically mediates TLR3 and TLR4 signaling via type 1 IFN. To further determine the innate signaling pathways in allogeneic BMC rejection, B6 background (H2b) MyD88−/− and TRIF−/− mice were conditioned with anti-CD154/rapamycin plus 100 cGy total body irradiation and transplanted with 15 × 106 BALB/c (H2d) BMC. Only 33.3% of MyD88−/− recipients engrafted at 1 month, resembling outcomes for wild-type B6 mice. In contrast, 100% of TRIF−/− mice engrafted. The level of donor chimerism in TRIF−/− mice was 5.1 ± 0.6% at one month, significantly higher than in MyD88−/− and wild-type B6 controls (P < 0.005). To determine the mechanism of innate signaling in BMC rejection, we examined whether TRIF linked TLR3 or TLR4 is the key pattern recognition receptor involved in BMC recognition. To this end, TLR3−/− and TLR4−/− mice were transplanted with BALB/c BMC with same conditioning. None of the TLR3−/− mice engrafted. In contrast, engraftment was achieved in 100% of TLR4−/− mice up to 6 months follow up. Taken together, these results suggest that rejection of allogeneic BMC is uniquely dependent on the TLR4/TRIF signaling pathway. Thus, our results clearly demonstrate a previously unappreciated role for innate immunity in allogeneic BMC rejection. Our current findings are distinct from prior reports demonstrating a critical role of MyD88 in rejection of allogeneic skin grafts and lung, and may reflect unique features related to BMC. The findings of the role of innate immunity in BMC rejection would lead to revolutionary changes in our understanding and management of BMT. This would be informative in design of more specific innate immune targeted conditioning proposals in BMT to avoid the toxicity. Disclosures: Bozulic: Regenerex LLC: Employment. Ildstad:Regenerex LLC: Equity Ownership.


Reproduction ◽  
2007 ◽  
Vol 133 (2) ◽  
pp. 487-493 ◽  
Author(s):  
Haengseok Song ◽  
Kyuyong Han ◽  
Hyunjung Lim

We previously showed that blastocyst can initiate implantation beyond the normal ‘window’ of uterine receptivity on day 5 of pregnancy and pseudopregnancy (PSP) in mice. In this study, we investigated whether uterine receptivity for blastocyst implantation can be further extended on day 6 of PSP and the role of progesterone (P4) on this event. Embryo transfers, experimentally induced decidualization,in situhybridization and [3H]thymidine incorporation were performed. Blastocysts initiate attachment reaction within 48 h when transferred on day 5, but not on day 6 of PSP. Likewise, decidualization reaction occurred on days 4 and 5 of PSP, but completely failed on day 6. However, P4supplementation partially retains uterine receptivity for blastocyst implantation and decidualization on day 6 of PSP. In addition, certain indicators of uterine receptivity, such as cell proliferation profile and expression patterns of implantation-related genes were similarly observed on days 4 and 5 of PSP, but not on day 6. Consistent with embryo transfer and decidualization, exogenous administration of P4partially restores these indicators on day 6 of PSP. We concluded that critical physiological changes occur between days 4 and 5 of PSP, leading to uterine non-receptivity on day 6, but P4is able to extend the uterine receptivity through day 6.


2013 ◽  
Vol 82 (3) ◽  
pp. 1181-1191 ◽  
Author(s):  
Linda Westermark ◽  
Anna Fahlgren ◽  
Maria Fällman

ABSTRACTThe human-pathogenic species of the Gram-negative genusYersiniapreferentially target and inactivate cells of the innate immune defense, suggesting that this is a critical step by which these bacteria avoid elimination and cause disease. In this study, bacterial interactions with dendritic cells, macrophages, and polymorphonuclear neutrophils (PMNs) in intestinal lymphoid tissues during earlyYersinia pseudotuberculosisinfection were analyzed. Wild-type bacteria were shown to interact mainly with dendritic cells, but not with PMNs, on day 1 postinfection, while avirulentyopHandyopEmutants interacted with PMNs as well as with dendritic cells. To unravel the role of PMNs during the early phase of infection, we depleted mice of PMNs by using an anti-Ly6G antibody, after which we could see more-efficient initial colonization by the wild-type strain as well as byyopH,yopE, andyopKmutants on day 1 postinfection. Dissemination ofyopH,yopE, andyopKmutants from the intestinal compartments to mesenteric lymph nodes was faster in PMN-depleted mice than in undepleted mice, emphasizing the importance of effective targeting of PMNs by theseYersiniaouter proteins (Yops). In conclusion, escape from interaction with PMNs due to the action of YopH, YopE, and YopK is a key feature of pathogenicYersiniaspecies that allows colonization and effective dissemination.


Sign in / Sign up

Export Citation Format

Share Document