scholarly journals Identifying Transiting Circumbinary Planets

2008 ◽  
Vol 4 (S253) ◽  
pp. 378-381
Author(s):  
Aviv Ofir

AbstractTransiting planets manifest themselves by a periodic dimming of their host star by a fixed amount. On the other hand, light curves of transiting circumbinary (CB) planets are expected to be neither periodic nor to have a single depth while in transit, making the Box-Least-Squares (BLS) transit detection method almost ineffective. Therefore, a modified version for the identification of CB planets was developed - CB-BLS. We show that using CB-BLS it is possible to find CB planets in the residuals of light curves of eclipsing binaries (EBs) that have noise levels of 1% or more. Using CB-BLS will allow us to use the massive ground- and space-based photometric surveys to look for these objects. Detecting transiting CB planets is expected to have a wide range of implications. For instance, the frequency of CB planets depends on the planetary formation mechanism - and planets in close pairs of stars provide a most restrictive constraint on planet formation models. Furthermore, understanding very high precision light curves is limited by stellar parameters - and since for EBs the stellar parameters are much better determined, the resultant planetary structure models will have significantly smaller error bars, maybe even small enough to challenge theory.

2017 ◽  
Vol 605 ◽  
pp. A114 ◽  
Author(s):  
F. Murgas ◽  
E. Pallé ◽  
H. Parviainen ◽  
G. Chen ◽  
L. Nortmann ◽  
...  

Context. Transiting planets offer an excellent opportunity for characterizing the atmospheres of extrasolar planets under very different conditions from those found in our solar system. Aims. We are currently carrying out a ground-based survey to obtain the transmission spectra of several extrasolar planets using the 10 m Gran Telescopio Canarias. In this paper we investigate the extrasolar planet WASP-48b, a hot Jupiter orbiting around an F-type star with a period of 2.14 days. Methods. We obtained long-slit optical spectroscopy of one transit of WASP-48b with the Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy (OSIRIS) spectrograph. We integrated the spectrum of WASP-48 and one reference star in several channels with different wavelength ranges, creating numerous color light curves of the transit. We fit analytic transit curves to the data taking into account the systematic effects present in the time series in an effort to measure the change of the planet-to-star radius ratio (Rp/Rs) across wavelength. The change in transit depth can be compared with atmosphere models to infer the presence of particular atomic or molecular compounds in the atmosphere of WASP-48b. Results. After removing the transit model and systematic trends to the curves we reached precisions between 261 ppm and 455–755 ppm for the white and spectroscopic light curves, respectively. We obtained Rp/Rs uncertainty values between 0.8 × 10-3 and 1.5 × 10-3 for all the curves analyzed in this work. The measured transit depth for the curves made by integrating the wavelength range between 530 nm and 905 nm is in agreement with previous studies. We report a relatively flat transmission spectrum for WASP-48b with no statistical significant detection of atmospheric species, although the theoretical models that fit the data more closely include TiO and VO.


Universe ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 369
Author(s):  
John Southworth

Binary stars are crucial laboratories for stellar physics, so have been photometric targets for space missions beginning with the very first orbiting telescope (OAO-2) launched in 1968. This review traces the binary stars observed and the scientific results obtained from the early days of ultraviolet missions (OAO-2, Voyager, ANS, IUE), through a period of diversification (Hipparcos, WIRE, MOST, BRITE), to the current era of large planetary transit surveys (CoRoT, Kepler, TESS). In this time observations have been obtained of detached, semi-detached and contact binaries containing dwarfs, sub-giants, giants, supergiants, white dwarfs, planets, neutron stars and accretion discs. Recent missions have found a huge variety of objects such as pulsating stars in eclipsing binaries, multi-eclipsers, heartbeat stars and binaries hosting transiting planets. Particular attention is paid to eclipsing binaries, because they are staggeringly useful, and to the NASA Transiting Exoplanet Survey Satellite (TESS) because its huge sky coverage enables a wide range of scientific investigations with unprecedented ease. These results are placed into context, future missions are discussed, and a list of important science goals is presented.


Author(s):  
Gerald B. Feldewerth

In recent years an increasing emphasis has been placed on the study of high temperature intermetallic compounds for possible aerospace applications. One group of interest is the B2 aiuminides. This group of intermetaliics has a very high melting temperature, good high temperature, and excellent specific strength. These qualities make it a candidate for applications such as turbine engines. The B2 aiuminides exist over a wide range of compositions and also have a large solubility for third element substitutional additions, which may allow alloying additions to overcome their major drawback, their brittle nature.One B2 aluminide currently being studied is cobalt aluminide. Optical microscopy of CoAl alloys produced at the University of Missouri-Rolla showed a dramatic decrease in the grain size which affects the yield strength and flow stress of long range ordered alloys, and a change in the grain shape with the addition of 0.5 % boron.


2004 ◽  
pp. 21-29
Author(s):  
G.V. Pyrog

In domestic scientific and public opinion, interest in religion as a new worldview paradigm is very high. Today's attention to the Christian religion in our society is connected, in our opinion, with the specificity of its value system, which distinguishes it from other forms of consciousness: the idea of ​​God, the absolute, the eternity of moral norms. That is why its historical forms do not receive accurate characteristics and do not matter in the mass consciousness. Modern religious beliefs do not always arise as a result of the direct influence of church preaching. The emerging religious values ​​are absorbed in a wide range of philosophical, artistic, ethical ideas, acting as a compensation for what is generally defined as spirituality. At the same time, the appeal to Christian values ​​became very popular.


Alloy Digest ◽  
1993 ◽  
Vol 42 (2) ◽  

Abstract Durcomet 100 is an improved version of Alloy CD-4 MCu with better corrosion and wear resistance. The alloy is used in the annealed condition and possesses excellent corrosion resistance over a wide range of corrosion environments. Mechanical strength is also very high. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as heat treating and joining. Filing Code: SS-540. Producer or source: Duriron Company Inc.


2019 ◽  
pp. 28-34
Author(s):  
Margarita Castillo-Téllez ◽  
Beatriz Castillo-Téllez ◽  
Juan Carlos Ovando-Sierra ◽  
Luz María Hernández-Cruz

For millennia, humans have used hundreds of medicinal plants to treat diseases. Currently, many species with important characteristics are known to alleviate a wide range of health problems, mainly in rural areas, where the use of these resources is very high, even replacing scientific medicine almost completely. This paper presents the dehydration of medicinal plants that are grown in the State of Campeche through direct and indirect solar technologies in order to evaluate the influence of air flow and temperature on the color of the final product through the L* a* scale. b*, analyzing the activity of water and humidity during the drying process. The experimental results showed that the direct solar dryer with forced convection presents a little significant color change in a drying time of 400 min on average, guaranteeing the null bacterial proliferation and reaching a final humidity between 9 % and 11 %.


2020 ◽  
Vol 499 (3) ◽  
pp. 4418-4431 ◽  
Author(s):  
Sujatha Ramakrishnan ◽  
Aseem Paranjape

ABSTRACT We use the Separate Universe technique to calibrate the dependence of linear and quadratic halo bias b1 and b2 on the local cosmic web environment of dark matter haloes. We do this by measuring the response of halo abundances at fixed mass and cosmic web tidal anisotropy α to an infinite wavelength initial perturbation. We augment our measurements with an analytical framework developed in earlier work that exploits the near-lognormal shape of the distribution of α and results in very high precision calibrations. We present convenient fitting functions for the dependence of b1 and b2 on α over a wide range of halo mass for redshifts 0 ≤ z ≤ 1. Our calibration of b2(α) is the first demonstration to date of the dependence of non-linear bias on the local web environment. Motivated by previous results that showed that α is the primary indicator of halo assembly bias for a number of halo properties beyond halo mass, we then extend our analytical framework to accommodate the dependence of b1 and b2 on any such secondary property that has, or can be monotonically transformed to have, a Gaussian distribution. We demonstrate this technique for the specific case of halo concentration, finding good agreement with previous results. Our calibrations will be useful for a variety of halo model analyses focusing on galaxy assembly bias, as well as analytical forecasts of the potential for using α as a segregating variable in multitracer analyses.


2021 ◽  
Vol 502 (1) ◽  
pp. 1299-1311
Author(s):  
Heidi B Thiemann ◽  
Andrew J Norton ◽  
Hugh J Dickinson ◽  
Adam McMaster ◽  
Ulrich C Kolb

ABSTRACT We present the first analysis of results from the SuperWASP variable stars Zooniverse project, which is aiming to classify 1.6 million phase-folded light curves of candidate stellar variables observed by the SuperWASP all sky survey with periods detected in the SuperWASP periodicity catalogue. The resultant data set currently contains >1 million classifications corresponding to >500 000 object–period combinations, provided by citizen–scientist volunteers. Volunteer-classified light curves have ∼89 per cent accuracy for detached and semidetached eclipsing binaries, but only ∼9 per cent accuracy for rotationally modulated variables, based on known objects. We demonstrate that this Zooniverse project will be valuable for both population studies of individual variable types and the identification of stellar variables for follow-up. We present preliminary findings on various unique and extreme variables in this analysis, including long-period contact binaries and binaries near the short-period cut-off, and we identify 301 previously unknown binaries and pulsators. We are now in the process of developing a web portal to enable other researchers to access the outputs of the SuperWASP variable stars project.


2020 ◽  
Vol 499 (4) ◽  
pp. 4605-4612
Author(s):  
T Giang Nguyen ◽  
Nicolas B Cowan ◽  
Agnibha Banerjee ◽  
John E Moores

ABSTRACT Transit searches have uncovered Earth-size planets orbiting so close to their host star that their surface should be molten, so-called lava planets. We present idealized simulations of the atmosphere of lava planet K2-141b and calculate the return flow of material via circulation in the magma ocean. We then compare how pure Na, SiO, or SiO2 atmospheres would impact future observations. The more volatile Na atmosphere is thickest followed by SiO and SiO2, as expected. Despite its low vapour pressure, we find that a SiO2 atmosphere is easier to observe via transit spectroscopy due to its greater scale height near the day–night terminator and the planetary radial velocity and acceleration are very high, facilitating high dispersion spectroscopy. The special geometry that arises from very small orbits allows for a wide range of limb observations for K2-141b. After determining the magma ocean depth, we infer that the ocean circulation required for SiO steady-state flow is only 10−4 m s−1, while the equivalent return flow for Na is several orders of magnitude greater. This suggests that a steady-state Na atmosphere cannot be sustained and that the surface will evolve over time.


1995 ◽  
Vol 39 ◽  
pp. 109-117
Author(s):  
Burkhard Beckhoff ◽  
Birgit Kanngießer

X-ray focusing based on Bragg reflection at curved crystals allows collection of a large solid angle of incident radiation, monochromatization of this radiation, and condensation of the beam reflected at the crystal into a small spatial cross-section in a pre-selected focal plane. Thus, for the Bragg reflected radiation, one can achieve higher intensities than for the radiation passing directly to the same small area in the focal plane. In that case one can profit considerably from X-ray focusing in an EDXRF arrangement. The 00 2 reflection at Highly Oriented Pyrolytic Graphite (HOPG) crystals offers a very high intensity of the Bragg reflected beam for a wide range of photon energies. Furthermore, curvature radii smaller than 10 mm can be achieved for HOPG crystals ensuring efficient X-ray focusing in EDXRF applications. For the trace analysis of very small amounts of specimen material deposited on small areas of thin-filter backings, HOPG based X-ray focusing may be used to achieve a very high intensity of monochromatic excitation radiation.


Sign in / Sign up

Export Citation Format

Share Document