Construction of a Dual Ionic Network in Natural Rubber with High Self-Healing Efficiency through Anionic Mechanism

2020 ◽  
Vol 59 (28) ◽  
pp. 12755-12765 ◽  
Author(s):  
Jinhui Liu ◽  
Chunlin Xiao ◽  
Jian Tang ◽  
Yudong Liu ◽  
Jing Hua
Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 39
Author(s):  
Bashir Algaily ◽  
Wisut Kaewsakul ◽  
Siti Salina Sarkawi ◽  
Ekwipoo Kalkornsurapranee

The property retentions of silica-reinforced natural rubber vulcanizates with various contents of a self-healing modifier called EMZ, which is based on epoxidized natural rubber (ENR) modified with hydrolyzed maleic anhydride (HMA) as an ester crosslinking agent plus zinc acetate dihydrate (ZAD) as a transesterification catalyst, were investigated. To validate its self-healing efficiency, the molecular-scale damages were introduced to vulcanizates using a tensile stress–strain cyclic test following the Mullins effect concept. The processing characteristics, reinforcing indicators, and physicomechanical and viscoelastic properties of the compounds were evaluated to identify the influences of plausible interactions in the system. Overall results demonstrate that the property retentions are significantly enhanced with increasing EMZ content at elevated treatment temperatures, because the EMZ modifier potentially contributes to reversible linkages leading to the intermolecular reparation of rubber network. Furthermore, a thermally annealing treatment of the damaged vulcanizates at a high temperature, e.g., 120 °C, substantially enhances the property recovery degree, most likely due to an impact of the transesterification reaction of the ester crosslinks adjacent to the molecular damages. This reaction can enable bond interchanges of the ester crosslinks, resulting in the feasibly exchanged positions of the ester crosslinks between the broken rubber molecules and, thus, achievable self-reparation of the damages.


2019 ◽  
Vol 17 ◽  
pp. 1064-1071 ◽  
Author(s):  
S.R Khimi ◽  
S.N. Syamsinar ◽  
T.N.L. Najwa

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4028
Author(s):  
Olga Olejnik ◽  
Anna Masek ◽  
Małgorzata Iwona Szynkowska-Jóźwik

In this publication, novel bio-based composites made of epoxidized natural rubber with 50 mol% of epoxidation (ENR-50) are presented. The obtained materials, partially cured with a totally environmentally friendly crosslinking system consisting of natural ingredients, including quercetin and silica, exhibit a self-healing ability resulting from the self-adhesion of ENR-50 and reversible physical forces between the curing agent and the matrix. The impact of natural components on the crosslinking effect in uncured ENR-50 matrix was analyzed based on rheometric measurements, mechanical tests and crosslinking density. The partially crosslinked samples were next cut into two separate pieces, which were instantly contacted together under a small manual press, left at room temperature for a few days for the healing process to occur and finally retested. The healing efficiency was estimated by measuring mechanical properties before and after the healing process and was also confirmed by photos taken using optical and scanning electron microscope (SEM). According to the results, a combination of silica and quercetin is a totally safe, natural and effective crosslinking system dedicated to epoxidized natural rubber. The novel composites containing ingredients safe for human beings exhibit promising self-healing properties with a healing efficiency of up to 45% without any external stimuli and stand a chance of becoming innovative biomedical materials.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuyan Wang ◽  
Xin Huang ◽  
Xinxing Zhang

AbstractSelf-healing materials integrated with excellent mechanical strength and simultaneously high healing efficiency would be of great use in many fields, however their fabrication has been proven extremely challenging. Here, inspired by biological cartilage, we present an ultrarobust self-healing material by incorporating high density noncovalent bonds at the interfaces between the dentritic tannic acid-modified tungsten disulfide nanosheets and polyurethane matrix to collectively produce a strong interfacial interaction. The resultant nanocomposite material with interwoven network shows excellent tensile strength (52.3 MPa), high toughness (282.7 MJ m‒3, which is 1.6 times higher than spider silk and 9.4 times higher than metallic aluminum), high stretchability (1020.8%) and excellent healing efficiency (80–100%), which overturns the previous understanding of traditional noncovalent bonding self-healing materials where high mechanical robustness and healing ability are mutually exclusive. Moreover, the interfacical supramolecular crosslinking structure enables the functional-healing ability of the resultant flexible smart actuation devices. This work opens an avenue toward the development of ultrarobust self-healing materials for various flexible functional devices.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 201
Author(s):  
Stefano Paolillo ◽  
Ranjita K. Bose ◽  
Marianella Hernández Santana ◽  
Antonio M. Grande

This article reviews some of the intrinsic self-healing epoxy materials that have been investigated throughout the course of the last twenty years. Emphasis is placed on those formulations suitable for the design of high-performance composites to be employed in the aerospace field. A brief introduction is given on the advantages of intrinsic self-healing polymers over extrinsic counterparts and of epoxies over other thermosetting systems. After a general description of the testing procedures adopted for the evaluation of the healing efficiency and the required features for a smooth implementation of such materials in the industry, different self-healing mechanisms, arising from either physical or chemical interactions, are detailed. The presented formulations are critically reviewed, comparing major strengths and weaknesses of their healing mechanisms, underlining the inherent structural polymer properties that may affect the healing phenomena. As many self-healing chemistries already provide the fundamental aspects for recyclability and reprocessability of thermosets, which have been historically thought as a critical issue, perspective trends of a circular economy for self-healing polymers are discussed along with their possible advances and challenges. This may open up the opportunity for a totally reconfigured landscape in composite manufacturing, with the net benefits of overall cost reduction and less waste. Some general drawbacks are also laid out along with some potential countermeasures to overcome or limit their impact. Finally, present and future applications in the aviation and space fields are portrayed.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 443
Author(s):  
Kunakorn Chumnum ◽  
Ekwipoo Kalkornsurapranee ◽  
Jobish Johns ◽  
Karnda Sengloyluan ◽  
Yeampon Nakaramontri

The self-healing composites were prepared from the combination of bromobutyl rubber (BIIR) and natural rubber (NR) blends filled with carbon nanotubes (CNT) and carbon black (CB). To reach the optimized self-healing propagation, the BIIR was modified with ionic liquid (IL) and butylimidazole (IM), and blended with NR using the ratios of 70:30 and 80:20 BIIR:NR. Physical and chemical modifications were confirmed from the mixing torque and attenuated total reflection-fourier transform infrared spectroscopy (ATR-FTIR). It was found that the BIIR/NR-CNTCB with IL and IM effectively improved the cure properties with enhanced tensile properties relative to pure BIIR/NR blends. For the healed composites, BIIR/NR-CNTCB-IM exhibited superior mechanical and electrical properties due to the existing ionic linkages in rubber matrix. For the abrasion resistances, puncture stress and electrical recyclability were examined to know the possibility of inner liner applications and Taber abrasion with dynamic mechanical properties were elucidated for tire tread applications. Based on the obtained Tg and Tan δ values, the composites are proposed for tire applications in the future with a simplified preparation procedure.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 773 ◽  
Author(s):  
Yuqing Qian ◽  
Xiaowei An ◽  
Xiaofei Huang ◽  
Xiangqiang Pan ◽  
Jian Zhu ◽  
...  

Dynamic structures containing polymers can behave as thermosets at room temperature while maintaining good mechanical properties, showing good reprocessability, repairability, and recyclability. In this work, alkyl diselenide is effectively used as a dynamic cross-linker for the design of self-healing poly(urea–urethane) elastomers, which show quantitative healing efficiency at room temperature, without the need for any catalysts or external interventions. Due to the combined action of the urea bond and amide bond, the material has better mechanical properties. We also compared the self-healing effect of alkyl diselenide-based polyurethanes and alkyl disulfide-based polyurethanes. The alkyl diselenide has been incorporated into polyurethane networks using a para-substituted amine diphenyl alkyl diselenide. The resulting materials not only exhibit faster self-healing properties than the corresponding disulfide-based materials, but also show the ability to be processed at temperatures as low as 60 °C.


2016 ◽  
Vol 7 (47) ◽  
pp. 7278-7286 ◽  
Author(s):  
Jian Zhao ◽  
Rui Xu ◽  
Gaoxing Luo ◽  
Jun Wu ◽  
Hesheng Xia

The poly(siloxane-urethane) elastomers with microphase separation structure and Diels–Alder bonds show high healing efficiency, good mechanical property and good biocompatibility.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Haoliang Huang ◽  
Guang Ye

In this research, self-healing due to further hydration of unhydrated cement particles is taken as an example for investigating the effects of capsules on the self-healing efficiency and mechanical properties of cementitious materials. The efficiency of supply of water by using capsules as a function of capsule dosages and sizes was determined numerically. By knowing the amount of water supplied via capsules, the efficiency of self-healing due to further hydration of unhydrated cement was quantified. In addition, the impact of capsules on mechanical properties was investigated numerically. The amount of released water increases with the dosage of capsules at different slops as the size of capsules varies. Concerning the best efficiency of self-healing, the optimizing size of capsules is 6.5 mm for capsule dosages of 3%, 5%, and 7%, respectively. Both elastic modulus and tensile strength of cementitious materials decrease with the increase of capsule. The decreasing tendency of tensile strength is larger than that of elastic modulus. However, it was found that the increase of positive effect (the capacity of inducing self-healing) of capsules is larger than that of negative effects (decreasing mechanical properties) when the dosage of capsules increases.


Sign in / Sign up

Export Citation Format

Share Document