Boric acid and Borax Supplementation Reduces Weight Gain in Overweight Rats and Alter L-Carnitine and IGF-I Levels

2020 ◽  
Vol 90 (3-4) ◽  
pp. 221-227 ◽  
Author(s):  
Onur Atakisi ◽  
Kezban Yildiz Dalginli ◽  
Canan Gulmez ◽  
Ruya Kaya ◽  
Ozkan Ozden ◽  
...  

Abstract. The aim of this study was to investigate the effects of boric acid (BA) and borax (BX) on live weight and obesity associated molecules including leptin, L-carnitine, insulin-like growth factor 1 (IGF-I), and heat shock proteins 70 (HSP70) in rats fed with high-fat diet. A total of 60 rats were equally allocated as ND (normal diet), HF (high-fat diet), HF+BA, HF+BX, ND+BX, ND+BA. Body weight increases in HF+BA (85 g) and HF+BX (86 g) were significantly lower (p<0.05) compared to HF group (126 g). Boron treatment decreased serum L-carnitine level in high-fat diet (HF+BA 11.12 mg/L, HF+BX 10.51 mg/L, p<0.05) compared to HF group (15.57 mg/L), while no change was observed in groups ND+BA (7.55 mg/L) and ND+BX (7.57 mg/L) compared to group ND (8.29 mg/L). Neither BA nor BX supplementation in ND and HF groups altered the serum levels of HSP70 and leptin. BA and BX supplementation in rats fed HF resulted in a significant reduction in live weight. Boron compounds altered L-carnitine and IGF-1 levels in rats. These results indicate that boron compounds are beneficial in the treatment of obesity as well as in the prevention of high-fat diet-induced weight increase. Alterations in serum L-carnitine and IGF-1 levels in boron treated rats also indicate possible role of boron compounds in energy metabolism in response to high fat diet.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yumeng Bai ◽  
Yali Feng ◽  
Bo Jiang ◽  
Yan Yang ◽  
Zuowei Pei ◽  
...  

Hyperlipidemia causes nervous system-related diseases. Exercise training has developed into an established evidence-based treatment strategy that is beneficial for neuronal injury. This study investigated the effect of exercise on hyperlipidemia-induced neuronal injury in apolipoprotein E-deficient (ApoE-/-) mice. Male ApoE-/- mice (age: 8 weeks) were randomly divided into four groups as follows: mice fed a normal diet (ND), normal diet+swimming training (ND+S), high-fat diet (HD), and high-fat diet+swimming (HD+S). Exercise training consisted of swimming for 40 min/day, 5 days/week for 12 weeks. After 12 weeks, we measured serum levels of total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-c). We also evaluated glial fibrillary acidic protein (GFAP) expression levels using immunohistochemistry, real-time PCR, and immunoblotting. In addition, NLR family pyrin domain-containing 3 (NLRP3), interleukin- (IL-) 18, caspase-1, Bax, Bcl-2, and phosphorylated extracellular signal-regulated kinase (p-ERK) expression levels were measured using immunoblotting. Serum levels of TG, TC, and LDL-c were lower in ApoE-/- HD+S mice than in ApoE-/- HD mice. Immunohistochemistry, real-time PCR, and immunoblotting showed increased levels of GFAP in the ApoE-/- HD group. Immunoblotting revealed increased levels of NLRP3, IL-18, caspase-1, Bax, Bcl-2, and p-ERK in the ApoE-/- HD group; however, they were significantly suppressed in the ApoE-/- HD+S group. Therefore, exercise has protective effects against neuronal injury caused by hyperlipidemia.


2018 ◽  
Vol 47 (5) ◽  
pp. 1862-1870 ◽  
Author(s):  
Tian Yang ◽  
Xiaobo Wu ◽  
Jimeng Hu ◽  
Mengbo Hu ◽  
Hua Xu ◽  
...  

Background/Aims: We aim to investigate the impact of maternal high fat diet (HFD) on the development and progression of prostate cancer (PCa) in transgenic adenocarcinoma mouse prostate (TRAMP) offspring. Methods: The TRAMP model was used, and divided into maternal HFD group and normal diet (ND) group in the present study. Each group contained 36 TRAMP mice. Serum levels of leptin, adiponectin, interleukin (IL) -1α, IL-1β, IL-6, tumor necrosis factor-α and monocyte chemotactic protein-1 were measured by the 20th, 24th and 28th week old through ProcartaPlex Multiplex Immunoassay. Body fat ratio was measured by MiniQMR. Tumor formation rate was measured through hematoxylin and eosin (H&E) staining, and mortality rate was measured meantime. Western blot was applied to determine the levels of Protein Kinase B (Akt) and Phosphatase and tensin homolog (PTEN). Results: The mortality rate of maternal HFD group was significantly higher than that of ND group (P = 0.046). The tumor formation rate was significantly higher in maternal HFD group than in ND group only in 20th week subgroup (P = 0.040). A significant increase of leptin was seen in maternal HFD 20th and 24th week subgroups (P = 0.001 and < 0.001, respectively) and a decrease of adiponectin was seen in maternal HFD 20th and 28th week subgroups (P =0.006 and < 0.001, respectively). Besides, an activated phos-Akt (P-Akt) and deactivated PTEN were observed in maternal HFD group. Conclusions: Maternal HFD could increase the standard serum leptin level, inhibit the expression of PTEN protein, promote P-Akt protein expression, activate the PI3K/Akt pathway, and ultimately promote the development and progression of PCa in TRAMP offspring.


2010 ◽  
Vol 20 (5) ◽  
pp. 370-380 ◽  
Author(s):  
Yanmei Niu ◽  
Hong Yuan ◽  
Li Fu

Insulin resistance (IR) is a common pathophysiological feature of Type 2 diabetes. Although the mechanisms leading to IR are still elusive, evidence has shown that aerobic exercise can reverse this process. To investigate the effects of aerobic exercise on IR, the authors created an IR animal model by feeding C57BL/6 mice a high-fat diet for 8 wk. They then compared the effect of 6 wk of treadmill training (60 min/d) at 75% VO2max on mice in normal-diet (NE) and high-fat-diet (HE) groups with their sedentary control groups. Levels of skeletal-muscle AMPKα (AMP-activated protein kinase α), ACC (acetyl-CoA carboxylases), and CPT1 (carnitine palmitoyltransferase 1) mRNA and AMPKα, pAMPK-Thr172, ACC, pACC-Ser79, and CPT1 protein expressions were analyzed. In addition, fasting serum levels of insulin, triglyceride, and cholesterol were measured. The results demonstrate that 6 wk of exercise increased AMPKα mRNA expression by 11% and 25 % (p < .01) in the NE and HE groups, respectively, and AMPKα protein expression by 37.9% and 20.1% (p < .01) in NE and HE compared with their sedentary control. In addition, ACC mRNA and protein expressions declined, whereas CPT1 mRNA and protein expressions were elevated in both exercise groups compared with sedentary control groups. In addition, pAMPK-Thr172 and pACC-Ser79 expression increased significantly in the NE and HE groups compared with sedentary control groups. In conclusion, our results demonstrate that 6 wk of aerobic exercise can effectively ameliorate IR by increasing the expression of AMPKα and pAMPK-Thr172, thereby activating the key enzymes that facilitate lipid metabolism.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Sedigheh Asgary ◽  
Mahmoud Rafieian-Kopaei ◽  
Somayeh Najafi ◽  
Esfandiar Heidarian ◽  
Amirhossein Sahebkar

The present study aimed to investigate the anti-hyperlipidemic effects of sesame in a high-fat fed rabbit model. Animals were randomly divided into four groups of eight animals each for 60 days as follows: normal diet, hypercholesterolemic diet (1% cholesterol), hypercholesterolemic diet (1% cholesterol) + sesame seed (10%), and hypercholesterolemic diet (1% cholesterol) + sesame oil (5%). Serum concentrations of total cholesterol, LDL-C, HDL-C, triglycerides, apoA and apoB, SGOT, SGPT, glucose and insulin were measured at the end of supplementation period in all studied groups. Hypercholesterolemic feeding resulted in a significant elevation of TC, TG, LDL-C, HDL-C, SGOT and SGPT as compared to the normocholesterolemic diet group (P<0.05). Supplementation with sesame seed did not cause any significant alteration in lipid profile parameters, apolipoproteins, hepatic transaminases, glucose and insulin as compared to the hypercholesterolemic diet group (P>0.05). In contrast, rabbits supplemented with sesame oil were found to have lower circulating concentrations of TC, LDL-C, HDL-C, SGOT and SGPT (P<0.05), whilst concentrations of TG, apoA, apoB, insulin and glucose remained unaltered compared to the hypercholesterolemic diet group (P>0.05). Supplementation with sesame oil, but not sesame seed, can ameliorate serum levels of lipids and hepatic enzymes in rabbits under a high-fat diet.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
C Bo-Htay ◽  
T Shwe ◽  
S Palee ◽  
T Pattarasakulchai ◽  
K Shinlapawittayatorn ◽  
...  

Abstract Background D-galactose (D-gal) induced ageing has been shown to exacerbate left ventricular (LV) dysfunction via worsening of apoptosis and mitochondrial dysfunction in the heart of obese rats. Hyperbaric oxygen therapy (HBOT) has been demonstrated to exert anti-inflammatory and anti-apoptotic effects in multiple neurological disorders. However, the cardioprotective effect of HBOT on inflammation, apoptosis, LV and mitochondrial functions in D-gal induced ageing rats in the presence of obese-insulin resistant condition has never been investigated. Purpose We sought to determine the effect of HBOT on inflammation, apoptosis, mitochondrial functions and LV function in pre-diabetic rats with D-gal induced ageing. We hypothesized that HBOT attenuates D-gal induced cardiac mitochondrial dysfunctions and reduces inflammation and apoptosis, leading to improved LV function in pre-diabetic rats. Methods Forty-eight male Wistar rats were fed with either normal diet or high-fat diet for 12 weeks. Then, rats were treated with either vehicle groups (0.9% NSS, subcutaneous injection (SC)) or D-gal groups (150 mg/kg/day, SC) for 8 weeks. At week 21, rats in each group were equally divided into 6 sub-groups: normal diet fed rats treated with vehicle (NDV) sham, normal diet fed rats treated with D-gal (NDDg) sham, high fat diet fed rats treated with D-gal (HFDg) sham, high fat diet fed rats treated with vehicle (HFV) + HBOT, NDDg + HBOT and HFDg + HBOT. Sham treated rats were given normal concentration of O2 (flow rate of 80 L/min, 1 ATA for 60 minutes), whereas HBOT treated rats were subjected to 100% O2 (flow rate of 250 L/min, 2 ATA for 60 minutes), given once daily for 2 weeks. Results Under obese-insulin resistant condition, D-gal-induced ageing aggravated LV dysfunction (Fig 1A) and impaired cardiac mitochondrial function, increased cardiac inflammatory and apoptotic markers (Fig 1B). HBOT markedly reduced cardiac TNF-α level and TUNEL positive apoptotic cells, and improved cardiac mitochondrial function as indicated by decreased mitochondrial ROS production, mitochondrial depolarization and mitochondrial swelling, resulting in the restoration of the normal LV function in HFV and NDDg rats, compared to sham NDDg rats. In addition, in HFDg treated rats, HBOT attenuated cardiac TNF-α level, TUNEL positive apoptotic cells and cardiac mitochondrial dysfunction, compared to sham HFDg rats, leading to improved cardiac function as indicated by increased %LV ejection fraction (LVEF) (Figure 1). Conclusion HBOT efficiently alleviates D-gal-induced-age-related LV dysfunction through mitigating inflammation, apoptosis and mitochondrial dysfunction in pre-diabetic rats. Figure 1 Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): 1. The National Science and Technology Development Agency Thailand, 2. Thailand Research Fund Grants


2020 ◽  
Vol 11 (8) ◽  
pp. 753-766
Author(s):  
A.I. Zaydi ◽  
L.-C. Lew ◽  
Y.-Y. Hor ◽  
M.H. Jaafar ◽  
L.-O. Chuah ◽  
...  

Aging processes affect the brain in many ways, ranging from cellular to functional levels which lead to cognitive decline and increased oxidative stress. The aim of this study was to investigate the potentials of Lactobacillus plantarum DR7 on brain health including cognitive and memory functions during aging and the impacts of high fat diet during a 12-week period. Male Sprague-Dawley rats were separated into six groups: (1) young animals on normal diet (ND, (2) young animals on a high fat diet (HFD), (3) aged animals on ND, (4) aged animals on HFD, (5) aged animals on HFD and L. plantarum DR7 (109 cfu/day) and (6) aged animals receiving HFD and lovastatin. To induce ageing, all rats in group 3 to 6 were injected sub-cutaneously at 600 mg/kg/day of D-galactose daily. The administration of DR7 has reduced anxiety accompanied by enhanced memory during behavioural assessments in aged-HFD rats (P<0.05). Hippocampal concentration of all three pro-inflammatory cytokines were increased during aging but reduced upon administration of both statin and DR7. Expressions of hippocampal neurotransmitters and apoptosis genes showed reduced expressions of indoleamine dioxygenase and P53 accompanied by increased expression of TPH1 in aged- HFD rats administered with DR7, indicating potential effects of DR7 along the pathways of serotonin and oxidative senescence. This study provided an insight into potentials of L. plantarum DR7 as a prospective dietary strategy to improve cognitive functions during aging. This study provided an insight into potentials of L. plantarum DR7 as a prospective dietary strategy to improve cognitive functions during aging.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Safia Akhtar ◽  
Silas A. Culver ◽  
Helmy M. Siragy

AbstractRecent studies suggested that renal gluconeogenesis is substantially stimulated in the kidney in presence of obesity. However, the mechanisms responsible for such stimulation are not well understood. Recently, our laboratory demonstrated that mice fed high fat diet (HFD) exhibited increase in renal Atp6ap2 [also known as (Pro)renin receptor] expression. We hypothesized that HFD upregulates renal gluconeogenesis via Atp6ap2-PGC-1α and AKT pathway. Using real-time polymerase chain reaction, western blot analysis and immunostaining, we evaluated renal expression of the Atp6ap2 and renal gluconeogenic enzymes, PEPCK and G6Pase, in wild type and inducible nephron specific Atp6ap2 knockout mice fed normal diet (ND, 12 kcal% fat) or a high-fat diet (HFD, 45 kcal% fat) for 8 weeks. Compared with ND, HFD mice had significantly higher body weight (23%) (P < 0.05), renal mRNA and protein expression of Atp6ap2 (39 and 35%), PEPCK (44 and 125%) and G6Pase (39 and 44%) respectively. In addition, compared to ND, HFD mice had increased renal protein expression of PGC-1α by 32% (P < 0.05) and downregulated AKT by 33% (P < 0.05) respectively in renal cortex. Atp6ap2-KO abrogated these changes in the mice fed HFD. In conclusion, we identified novel regulation of renal gluconeogenesis by Atp6ap2 in response to high fat diet via PGC1-α/AKT-1 pathway.


2015 ◽  
Vol 35 (6) ◽  
pp. 2349-2359 ◽  
Author(s):  
Youli Xi ◽  
Miaozong Wu ◽  
Hongxia Li ◽  
Siqi Dong ◽  
Erfei Luo ◽  
...  

Background/Aims: Obesity-associated fatty liver disease affects millions of individuals. This study aimed to evaluate the therapeutic effects of baicalin to treat obesity and fatty liver in high fat diet-induced obese mice, and to study the potential molecular mechanisms. Methods: High fat diet-induced obese animals were treated with different doses of baicalin (100, 200 and 400 mg/kg/d). Whole body, fat pad and liver were weighed. Hyperlipidemia, liver steatosis, liver function, and hepatic Ca2+/CaM-dependent protein kinase kinase β (CaMKKβ) / AMP-activated protein kinase (AMPK) / acetyl-CoA carboxylase (ACC) were further evaluated. Results: Baicalin significantly decreased liver, epididymal fat and body weights in high fat diet-fed mice, which were associated with decreased serum levels of triglycerides, total cholesterol, LDL, alanine transaminase and aspartate transaminase, but increased serum HDL level. Pathological analysis revealed baicalin dose-dependently decreased the degree of hepatic steatosis, with predominantly diminished macrovesicular steatosis at lower dose but both macrovesicular and microvesicular steatoses at higher dose of baicalin. Baicalin dose-dependently inhibited hepatic CaMKKβ/AMPK/ACC pathway. Conclusion: These data suggest that baicalin up to 400 mg/kg/d is safe and able to decrease the degree of obesity and fatty liver diseases. Hepatic CaMKKβ/AMPK/ACC pathway may mediate the therapeutic effects of baicalin in high fat diet animal model.


2021 ◽  
pp. 1-14
Author(s):  
Jian Bao ◽  
Zheng Liang ◽  
Xiaokang Gong ◽  
Jing Yu ◽  
Yifan Xiao ◽  
...  

Background: Alzheimer’s disease (AD) is the most common form of dementia in older adults and extracellular accumulation of amyloid-β (Aβ) is one of the two characterized pathologies of AD. Obesity is significantly associated with AD developing factors. Several studies have reported that high fat diet (HFD) influenced Aβ accumulation and cognitive performance during AD pathology. However, the underlying neurobiological mechanisms have not yet been elucidated. Objective: The objective of this study was to explore the underlying neurobiological mechanisms of HFD influenced Aβ accumulation and cognitive performance during AD pathology. Methods: 2.5-month-old male APP/PS1 mice were randomly separated into two groups: 1) the normal diet (ND) group, fed a standard diet (10 kcal%fat); and 2) the HFD group, fed a high fat diet (40 kcal%fat, D12492; Research Diets). After 4 months of HFD or ND feeding, mice in the two groups were subjected for further ethological, morphological, and biochemical analyses. Results: A long-term HFD diet significantly increased perirenal fat and impaired dendritic integrity and aggravated neurodegeneration, and augmented learning and memory deficits in APP/PS1 mice. Furthermore, the HFD increased beta amyloid cleaving enzyme 1 (BACE1) dephosphorylation and SUMOylation, resulting in enhanced enzyme activity and stability, which exacerbated the deposition of amyloid plaques. Conclusion: Our study demonstrates that long-term HFD consumption aggravates amyloid-β accumulation and cognitive impairments, and that modifiable lifestyle factors, such as obesity, can induce BACE1 post-modifications which may contribute to AD pathogenesis.


Author(s):  
Rizka Veni ◽  
Awal Prasetyo ◽  
Muflihatul Muniroh

This study aims to analyze the effect of combination of motor vehicle particular matter exposure and high-fat diet in kidney histopathology, creatinine levels, and MDA levels in Wistar rats. This study used a posttest-only control group design. Eighteen healthy male Wistar rats were divided into three groups. The intervention groups received motor vehicle fume exposure for 100 s with normal diet (X1) or high-fat diet (X2), and the control group received no exposure (C). Data analysis was processed with a SPSS 25.0 computer program by using the one-way ANOVA test followed by post hoc LSD. The degree of kidney histopathological damage showed significant differences between the X1 and X2 groups when compared with the control group (p < 0.05). The results of the creatinine level examination found a significant difference between the X2 and C groups (p < 0.05) and the treatment groups X1 and X2 (p < 0.05). The results of kidney MDA level examination showed a significant difference between the treatment groups (X1 and X2) and the control group (p < 0.05). The combination of particular matter of motor vehicle fumes exposure and high-fat diet could induce kidney damage through histopathological change and increased creatinine levels and kidney MDA levels in Wistar rats.


Sign in / Sign up

Export Citation Format

Share Document