scholarly journals Single-cell transcriptome atlas of lung adenocarcinoma featured with ground glass nodules

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Tao Lu ◽  
Xiaodong Yang ◽  
Yu Shi ◽  
Mengnan Zhao ◽  
Guoshu Bi ◽  
...  

Abstract As an early type of lung adenocarcinoma, ground glass nodule (GGN) has been detected increasingly and now accounts for most lung cancer outpatients. GGN has a satisfactory prognosis and its characteristics are quite different from solid adenocarcinoma (SADC). We compared the GGN adenocarcinoma (GGN-ADC) with SADC using the single-cell RNA sequencing (scRNA-seq) to fully understand GGNs. The tumor samples of five patients with lung GGN-ADCs and five with SADCs underwent surgery were digested to a single-cell suspension and analyzed using 10× Genomic scRNA-seq techniques. We obtained 60,459 cells and then classified them as eight cell types, including cancer cells, endothelial cells, fibroblasts, T cells, B cells, Nature killer cells, mast cells, and myeloid cells. We provided a comprehensive description of the cancer cells and stromal cells. We found that the signaling pathways related to cell proliferation were downregulated in GGN-ADC cancer cells, and stromal cells had different effects in GGN-ADC and SADC based on the analyses of scRNA-seq results. In GGN-ADC, the signaling pathways of angiogenesis were downregulated, fibroblasts expressed low levels of some collagens, and immune cells were more activated. Furthermore, we used flow cytometry to isolate the cancer cells and T cells in 12 GGN-ADC samples and in an equal number of SADC samples, including CD4+ T and CD8+ T cells, and validated the expression of key molecules by quantitative real-time polymerase chain reaction analyses. Through comprehensive analyses of cell phenotypes in GGNs, we provide deep insights into lung carcinogenesis that will be beneficial in lung cancer prevention and therapy.

2021 ◽  
Author(s):  
Eun Young Kim ◽  
Yoon Jin Cha ◽  
Sang Hoon Lee ◽  
Sukin Jeong ◽  
Young Jun Choi ◽  
...  

Abstract Background: Ground-glass nodules (GGNs) are radiologically defined pulmonary nodules characterized by preserved bronchial and vascular structures in the lung window on chest computed tomography. Lung adenocarcinoma present in the form of persistent GGN is a good model for studying early lung carcinogenesis. We sought to decipher the transcriptome of early lung cancer and its tumor microenvironment from nonsmokers.Methods: Eleven surgical specimens from 6 patients with persistent pure or part-solid GGNs and no smoking or long-term nonsmoking history were obtained and studied by single-cell RNA sequencing analysis.Results: Early lung cancer cells showed enrichment of genes related to small vesicle processing and surfactant homeostasis compared to normal lung epithelial cells, suggesting that the surfactant-related pathway is strongly involved in early lung carcinogenesis. Even in this early stage of lung carcinogenesis, the tumor immune microenvironment was disrupted, with myeloid-derived suppressor cells showing activation of tumor-promoting cytokine pathways, making the tumor microenvironment more permissive for tumor progression and promoting infiltration of regulatory T cells and depletion of CD8+ cytotoxic T cells (TCs) and γδ TCs. Although mucosa-associated lymphoid tissue (MALT) B cells (BCs) and follicular BCs are present in small proportions, they showed increased infiltration in tumor tissues compared to adjacent normal lung tissues. Overexpression of hypoxia-related genes and active suppression of normal angiogenesis were observed in cancer-associated fibroblasts.Conclusions: Changes in the tumor microenvironment that begin very early in lung cancer create an environment prone to immune evasion, suggesting that regulation of such changes is a strategy for inhibiting cancer growth.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Fang Lv ◽  
Xueying Wu ◽  
Jin Song ◽  
Pan Wang ◽  
Shucheng Ren ◽  
...  

AbstractIt has been suggested that the heterogeneity of TAAs in lung cancer may affect the therapeutic response and disease progression. Up to now, several tumor-associated antigen (TAA)-based cancer vaccines have been investigated in lung adenocarcinoma (LUAD); however, most of them have failed at the stage of clinical trials. The present study suggests that inter-tumoral heterogeneity of TAAs is large at single-cell resolution, while the communication between tumor cells and infiltrating T cells is closely related to the expression profile of TAAs.


2020 ◽  
Vol 48 (01) ◽  
pp. 201-222
Author(s):  
Hsu-Kai Huang ◽  
Shin-Yi Lee ◽  
Shu-Fen Huang ◽  
Yu-San Lin ◽  
Shih-Chi Chao ◽  
...  

Aggressive tumor cells mainly rely on glycolysis, and further release vast amounts of lactate and protons by monocarboxylate transporter (MCT), which causes a higher intracellular pH (pHi) and acidic extracellular pH. Isoorientin, a principle flavonoid compound extracted from several plant species, shows various pharmacological activities. However, effects of isoorientin on anticancer and MCT await to explore in human lung cancer cells. Human lung cancer tissues were obtained from cancer patients undergoing surgery, while the human lung adenocarcinoma cells (A549) were bought commercially. Change of pHi was detected by microspectrofluorometry method with a pH-sensitive fluorescent dye, BCECF. MTT and wound-healing assay were used to detect the cell viability and migration, respectively. Western blot techniques and immunocytochemistry staining were used to detect the protein expression. Our results indicated that the expression of MCTs1/4 and CD147 were upregulated significantly in human lung tissues. In experiments of A549 cells, under HEPES-buffer, the resting pHi was 7.47, and isoorientin (1–300[Formula: see text][Formula: see text]M) inhibited functional activity of MCT concentration-dependently (up to [Formula: see text]%). Pretreatment with isoorientin (3–100[Formula: see text][Formula: see text]M) for 24[Formula: see text]h, MCT activity and cell migration were significantly inhibited ([Formula: see text]% and [Formula: see text]%, respectively), while the cell viability was not affected. Moreover, the expression of MCTs1/4, CD147, and matrix metalloproteinase (MMP) 2/9 were significantly down regulated. In summary, MCTs1/4 and CD147 are significantly upregulated in human lung adenocarcinoma tissues, and isoorientin inhibits cells-migration by inhibiting activity/expression of MCTs1/4 and MMPs2/9 in human lung cancer cells. These novel findings suggest that isoorientin could be a promising pharmacological agent for lung cancer.


Author(s):  
Lu Yuan ◽  
Xixi Wu ◽  
Longshan Zhang ◽  
Mi Yang ◽  
Xiaoqing Wang ◽  
...  

AbstractPulmonary surfactant protein A1 (SFTPA1) is a member of the C-type lectin subfamily that plays a critical role in maintaining lung tissue homeostasis and the innate immune response. SFTPA1 disruption can cause several acute or chronic lung diseases, including lung cancer. However, little research has been performed to associate SFTPA1 with immune cell infiltration and the response to immunotherapy in lung cancer. The findings of our study describe the SFTPA1 expression profile in multiple databases and was validated in BALB/c mice, human tumor tissues, and paired normal tissues using an immunohistochemistry assay. High SFTPA1 mRNA expression was associated with a favorable prognosis through a survival analysis in lung adenocarcinoma (LUAD) samples from TCGA. Further GeneOntology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that SFTPA1 was involved in the toll-like receptor signaling pathway. An immune infiltration analysis clarified that high SFTPA1 expression was associated with an increased number of M1 macrophages, CD8+ T cells, memory activated CD4+ T cells, regulatory T cells, as well as a reduced number of M2 macrophages. Our clinical data suggest that SFTPA1 may serve as a biomarker for predicting a favorable response to immunotherapy for patients with LUAD. Collectively, our study extends the expression profile and potential regulatory pathways of SFTPA1 and may provide a potential biomarker for establishing novel preventive and therapeutic strategies for lung adenocarcinoma.


Cancers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 155
Author(s):  
Pankaj Ahluwalia ◽  
Meenakshi Ahluwalia ◽  
Ashis K. Mondal ◽  
Nikhil Sahajpal ◽  
Vamsi Kota ◽  
...  

Lung cancer is one of the leading causes of death worldwide. Cell death pathways such as autophagy, apoptosis, and necrosis can provide useful clinical and immunological insights that can assist in the design of personalized therapeutics. In this study, variations in the expression of genes involved in cell death pathways and resulting infiltration of immune cells were explored in lung adenocarcinoma (The Cancer Genome Atlas: TCGA, lung adenocarcinoma (LUAD), 510 patients). Firstly, genes involved in autophagy (n = 34 genes), apoptosis (n = 66 genes), and necrosis (n = 32 genes) were analyzed to assess the prognostic significance in lung cancer. The significant genes were used to develop the cell death index (CDI) of 21 genes which clustered patients based on high risk (high CDI) and low risk (low CDI). The survival analysis using the Kaplan–Meier curve differentiated patients based on overall survival (40.4 months vs. 76.2 months), progression-free survival (26.2 months vs. 48.6 months), and disease-free survival (62.2 months vs. 158.2 months) (Log-rank test, p < 0.01). Cox proportional hazard model significantly associated patients in high CDI group with a higher risk of mortality (Hazard Ratio: H.R 1.75, 95% CI: 1.28–2.45, p < 0.001). Differential gene expression analysis using principal component analysis (PCA) identified genes with the highest fold change forming distinct clusters. To analyze the immune parameters in two risk groups, cytokines expression (n = 265 genes) analysis revealed the highest association of IL-15RA and IL 15 (> 1.5-fold, p < 0.01) with the high-risk group. The microenvironment cell-population (MCP)-counter algorithm identified the higher infiltration of CD8+ T cells, macrophages, and lower infiltration of neutrophils with the high-risk group. Interestingly, this group also showed a higher expression of immune checkpoint molecules CD-274 (PD-L1), CTLA-4, and T cell exhaustion genes (HAVCR2, TIGIT, LAG3, PDCD1, CXCL13, and LYN) (p < 0.01). Furthermore, functional enrichment analysis identified significant perturbations in immune pathways in the higher risk group. This study highlights the presence of an immunocompromised microenvironment indicated by the higher infiltration of cytotoxic T cells along with the presence of checkpoint molecules and T cell exhaustion genes. These patients at higher risk might be more suitable to benefit from PD-L1 blockade or other checkpoint blockade immunotherapies.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A799-A799
Author(s):  
Dhiraj Kumar ◽  
Sreeharsha Gurrapu ◽  
Hyunho Han ◽  
Yan Wang ◽  
Seongyeon Bae ◽  
...  

BackgroundLong non-coding RNAs (lncRNAs) are involved in various biological processes and diseases. Malat1 (metastasis-associated lung adenocarcinoma transcript 1), also known as Neat2, is one of the most abundant and highly conserved nuclear lncRNAs. Several studies have shown that the expression of lncRNA Malat1 is associated with metastasis and serving as a predictive marker for various tumor progression. Metastatic relapse often develops years after primary tumor removal as a result of disseminated tumor cells undergoing a period of latency in the target organ.1–4 However, the correlation of tumor intrinsic lncRNA in regulation of tumor dormancy and immune evasion is largely unknown.MethodsUsing an in vivo screening platform for the isolation of genetic entities involved in either dormancy or reactivation of breast cancer tumor cells, we have identified Malat1 as a positive mediator of metastatic reactivation. To functionally uncover the role of Malat1 in metastatic reactivation, we have developed a knock out (KO) model by using paired gRNA CRISPR-Cas9 deletion approach in metastatic breast and other cancer types, including lung, colon and melanoma. As proof of concept we also used inducible knockdown system under in vivo models. To delineate the immune micro-environment, we have used 10X genomics single cell RNA-seq, ChIRP-seq, multi-color flowcytometry, RNA-FISH and immunofluorescence.ResultsOur results reveal that the deletion of Malat1 abrogates the tumorigenic and metastatic potential of these tumors and supports long-term survival without affecting their ploidy, proliferation, and nuclear speckles formation. In contrast, overexpression of Malat1 leads to metastatic reactivation of dormant breast cancer cells. Moreover, the loss of Malat1 in metastatic cells induces dormancy features and inhibits cancer stemness. Our RNA-seq and ChIRP-seq data indicate that Malat1 KO downregulates several immune evasion and stemness associated genes. Strikingly, Malat1 KO cells exhibit metastatic outgrowth when injected in T cells defective mice. Our single-cell RNA-seq cluster analysis and multi-color flow cytometry data show a greater proportion of T cells and reduce Neutrophils infiltration in KO mice which indicate that the immune microenvironment playing an important role in Malat1-dependent immune evasion. Mechanistically, loss of Malat1 is associated with reduced expression of Serpinb6b, which protects the tumor cells from cytotoxic killing by the T cells. Indeed, overexpression of Serpinb6b rescued the metastatic potential of Malat1 KO cells by protecting against cytotoxic T cells.ConclusionsCollectively, our data indicate that targeting this novel cancer-cell-initiated domino effect within the immune system represents a new strategy to inhibit tumor metastatic reactivation.Trial RegistrationN/AEthics ApprovalFor all the animal studies in the present study, the study protocols were approved by the Institutional Animal Care and Use Committee(IACUC) of UT MD Anderson Cancer Center.ConsentN/AReferencesArun G, Diermeier S, Akerman M, et al., Differentiation of mammary tumors and reduction in metastasis upon Malat1 lncRNA loss. Genes Dev 2016 Jan 1;30(1):34–51.Filippo G. Giancotti, mechanisms governing metastatic dormancy and reactivation. Cell 2013 Nov 7;155(4):750–764.Gao H, Chakraborty G, Lee-Lim AP, et al., The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell 2012b;150:764–779.Gao H, Chakraborty G, Lee-Lim AP, et al., Forward genetic screens in mice uncover mediators and suppressors of metastatic reactivation. Proc Natl Acad Sci U S A 2014 Nov 18; 111(46): 16532–16537.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Lei He ◽  
Quan Zhang ◽  
Yue Zhang ◽  
Yixian Fan ◽  
Fahu Yuan ◽  
...  

Abstract Background The coronavirus disease 2019 (COVID-19) outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) has become an ongoing pandemic. Understanding the respiratory immune microenvironment which is composed of multiple cell types, together with cell communication based on ligand–receptor interactions is important for developing vaccines, probing COVID-19 pathogenesis, and improving pandemic control measures. Methods A total of 102 consecutive hospitalized patients with confirmed COVID-19 were enrolled in this study. Clinical information, routine laboratory tests, and flow cytometry analysis data with different conditions were collected and assessed for predictive value in COVID-19 patients. Next, we analyzed public single-cell RNA-sequencing (scRNA-seq) data from bronchoalveolar lavage fluid, which offers the closest available view of immune cell heterogeneity as encountered in patients with varying severity of COVID-19. A weighting algorithm was used to calculate ligand–receptor interactions, revealing the communication potentially associated with outcomes across cell types. Finally, serum cytokines including IL6, IL1β, IL10, CXCL10, TNFα, GALECTIN-1, and IGF1 derived from patients were measured. Results Of the 102 COVID-19 patients, 42 cases (41.2%) were categorized as severe. Multivariate logistic regression analysis demonstrated that AST, D-dimer, BUN, and WBC were considered as independent risk factors for the severity of COVID-19. T cell numbers including total T cells, CD4+ and CD8+ T cells in the severe disease group were significantly lower than those in the moderate disease group. The risk model containing the above mentioned inflammatory damage parameters, and the counts of T cells, with AUROCs ranged from 0.78 to 0.87. To investigate the molecular mechanism at the cellular level, we analyzed the published scRNA-seq data and found that macrophages displayed specific functional diversity after SARS-Cov-2 infection, and the metabolic pathway activities in the identified macrophage subtypes were influenced by hypoxia status. Importantly, we described ligand–receptor interactions that are related to COVID-19 serverity involving macrophages and T cell subsets by communication analysis. Conclusions Our study showed that macrophages driving ligand–receptor crosstalk contributed to the reduction and exhaustion of CD8+ T cells. The identified crucial cytokine panel, including IL6, IL1β, IL10, CXCL10, IGF1, and GALECTIN-1, may offer the selective targets to improve the efficacy of COVID-19 therapy. Trial registration: This is a retrospective observational study without a trial registration number.


2015 ◽  
Vol 212 (13) ◽  
pp. 2289-2304 ◽  
Author(s):  
Binh L. Phong ◽  
Lyndsay Avery ◽  
Tina L. Sumpter ◽  
Jacob V. Gorman ◽  
Simon C. Watkins ◽  
...  

T cell (or transmembrane) immunoglobulin and mucin domain protein 3 (Tim-3) has attracted significant attention as a novel immune checkpoint receptor (ICR) on chronically stimulated, often dysfunctional, T cells. Antibodies to Tim-3 can enhance antiviral and antitumor immune responses. Tim-3 is also constitutively expressed by mast cells, NK cells and specific subsets of macrophages and dendritic cells. There is ample evidence for a positive role for Tim-3 in these latter cell types, which is at odds with the model of Tim-3 as an inhibitory molecule on T cells. At this point, little is known about the molecular mechanisms by which Tim-3 regulates the function of T cells or other cell types. We have focused on defining the effects of Tim-3 ligation on mast cell activation, as these cells constitutively express Tim-3 and are activated through an ITAM-containing receptor for IgE (FcεRI), using signaling pathways analogous to those in T cells. Using a variety of gain- and loss-of-function approaches, we find that Tim-3 acts at a receptor-proximal point to enhance Lyn kinase-dependent signaling pathways that modulate both immediate-phase degranulation and late-phase cytokine production downstream of FcεRI ligation.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Yong Zhong ◽  
Xiangcheng Xiao

Abstract Background and Aims The exact molecular mechanisms underlying IgA nephropathy (IgAN) remains incompletely defined. Therefore, it is necessary to further elucidate the mechanism of IgA nephropathy and find novel therapeutic targets. Method Single-cell RNA sequencing (scRNA-seq) was applied to kidney biopsies from 4 IgAN and 1 control subjects to define the transcriptomic landscape at the single-cell resolution. Unsupervised clustering analysis of kidney specimens was used to identify distinct cell clusters. Differentially expressed genes and potential signaling pathways involved in IgAN were also identified. Results Our analysis identified 14 cell subsets in kidney biopsies from IgAN patients, and analyzed changing gene expression in distinct renal cell types. We found increased mesangial expression of several novel genes including MALAT1, GADD45B, SOX4 and EDIL3, which were related to proliferation and matrix accumulation and have not been reported in IgAN previously. The overexpressed genes in tubule cells of IgAN were mainly enriched in inflammatory pathways including TNF signaling, IL-17 signaling and NOD-like receptor signaling. Moreover, the receptor-ligand crosstalk analysis revealed potential interactions between mesangial cells and other cells in IgAN. Specifically, IgAN with overt proteinuria displayed elevated genes participating in several signaling pathways which may be involved in pathogenesis of progression of IgAN. Conclusion The comprehensive analysis of kidney biopsy specimen demonstrated different gene expression profile, potential pathologic ligand-receptor crosstalk, signaling pathways in human IgAN. These results offer new insight into pathogenesis and identify new therapeutic targets for patients with IgA nephropathy.


2019 ◽  
Vol 97 (4) ◽  
pp. 415-422 ◽  
Author(s):  
Linqing Pan ◽  
Zhipeng Tang ◽  
Lina Pan ◽  
Ranran Tang

A previous study by our group indicted that overexpression of bromodomain PHD-finger transcription factor (BPTF) occurs in lung adenocarcinoma, and is closely associated with advanced clinical stage, higher numbers of metastatic lymph nodes, the occurrence of distant metastasis, low histological grade, and poor prognosis. Down-regulation of BPTF inhibited lung adenocarcinoma cell proliferation and promoted lung adenocarcinoma cell apoptosis. The purpose of this study is to identify valuable microRNAs (miRNAs) that target BPTF to modulate lung adenocarcinoma cell proliferation. In our results, we found that miR-3666 was notably reduced in lung adenocarcinoma tissues and cell lines. Using an miR-3666 mimic, we discovered that cell proliferation, migration, and invasiveness were suppressed by miR-3666 overexpression, but these were all enhanced when the expression of miR-3666 was reduced. Moreover, bioinformatics analysis using the TargetScan database and miRanda software suggested a putative target site in BPTF 3′-UTR. Furthermore, using a luciferase reporter assay, we verified that miR-3666 directly targets the 3′-UTR of BPTF. Using Western blot we discovered that overexpression of miR-3666 negatively regulates the protein expression of BPTF. Finally, we identified that the PI3K–AKT and epilthelial–mesenchymal transition (EMT) signaling pathways were inhibited by miR-3666 overexpression in lung cancer cells. In conclusion, our data indicate that miR-3666 could play an essential role in cell proliferation, migration, and invasiveness by targeting BPTF and partly inhibiting the PI3K–AKT and EMT signaling pathways in human lung cancers.


Sign in / Sign up

Export Citation Format

Share Document