scholarly journals Integrated single-cell analysis revealed immune dynamics during Ad5-nCoV immunization

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Qiqi Cao ◽  
Shipo Wu ◽  
Chuanle Xiao ◽  
Shuzhen Chen ◽  
Xiangyang Chi ◽  
...  

AbstractCoronavirus disease 2019 (COVID-19), driven by SARS-CoV-2, is a severe infectious disease that has become a global health threat. Vaccines are among the most effective public health tools for combating COVID-19. Immune status is critical for evaluating the safety and response to the vaccine, however, the evolution of the immune response during immunization remains poorly understood. Single-cell RNA sequencing (scRNA-seq) represents a powerful tool for dissecting multicellular behavior and discovering therapeutic antibodies. Herein, by performing scRNA/V(D)J-seq on peripheral blood mononuclear cells from four COVID-19 vaccine trial participants longitudinally during immunization, we revealed enhanced cellular immunity with concerted and cell type-specific IFN responses as well as boosted humoral immunity with SARS-CoV-2-specific antibodies. Based on the CDR3 sequence and germline enrichment, we were able to identify several potential binding antibodies. We synthesized, expressed and tested 21 clones from the identified lineages. Among them, one monoclonal antibody (P3V6-1) exhibited relatively high affinity with the extracellular domain of Spike protein, which might be a promising therapeutic reagent for COVID-19. Overall, our findings provide insights for assessing vaccine through the novel scRNA/V(D)J-seq approach, which might facilitate the development of more potent, durable and safe prophylactic vaccines.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Alex R Schuurman ◽  
Tom DY Reijnders ◽  
Anno Saris ◽  
Ivan Ramirez Moral ◽  
Michiel Schinkel ◽  
...  

The exact immunopathophysiology of community-acquired pneumonia (CAP) caused by SARS-CoV-2 (COVID-19) remains clouded by a general lack of relevant disease controls. The scarcity of single-cell investigations in the broader population of patients with CAP renders it difficult to distinguish immune features unique to COVID-19 from the common characteristics of a dysregulated host response to pneumonia. We performed integrated single-cell transcriptomic and proteomic analyses in peripheral blood mononuclear cells from a matched cohort of eight patients with COVID-19, eight patients with CAP caused by Influenza A or other pathogens, and four non-infectious control subjects. Using this balanced, multi-omics approach, we describe shared and diverging transcriptional and phenotypic patterns—including increased levels of type I interferon-stimulated natural killer cells in COVID-19, cytotoxic CD8 T EMRA cells in both COVID-19 and influenza, and distinctive monocyte compositions between all groups—and thereby expand our understanding of the peripheral immune response in different etiologies of pneumonia.


Author(s):  
Ting Luo ◽  
Fengping Zheng ◽  
Kang Wang ◽  
Yong Xu ◽  
Huixuan Xu ◽  
...  

Abstract Background Immune aberrations in end-stage renal disease (ESRD) are characterized by systemic inflammation and immune deficiency. The mechanistic understanding of this phenomenon remains limited. Methods We generated 12 981 and 9578 single-cell transcriptomes of peripheral blood mononuclear cells (PBMCs) that were pooled from 10 healthy volunteers and 10 patients with ESRD by single-cell RNA sequencing. Unsupervised clustering and annotation analyses were performed to cluster and identify cell types. The analysis of hallmark pathway and regulon activity was performed in the main cell types. Results We identified 14 leukocytic clusters that corresponded to six known PBMC types. The comparison of cells from ESRD patients and healthy individuals revealed multiple changes in biological processes. We noticed an ESRD-related increase in inflammation response, complement cascade and cellular metabolism, as well as a strong decrease in activity related to cell cycle progression in relevant cell types in ESRD. Furthermore, a list of cell type-specific candidate transcription factors (TFs) driving the ESRD-associated transcriptome changes was identified. Conclusions We generated a distinctive, high-resolution map of ESRD-derived PBMCs. These results revealed cell type-specific ESRD-associated pathways and TFs. Notably, the pooled sample analysis limits the generalization of our results. The generation of larger single-cell datasets will complement the current map and drive advances in therapies that manipulate immune cell function in ESRD.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261242
Author(s):  
Kai Huang ◽  
Catherine Wang ◽  
Christen Vagts ◽  
Vanitha Raguveer ◽  
Patricia W. Finn ◽  
...  

Hyperactive and damaging inflammation is a hallmark of severe rather than mild Coronavirus disease 2019 (COVID-19). To uncover key inflammatory differentiators between severe and mild COVID-19, we applied an unbiased single-cell transcriptomic analysis. We integrated two single-cell RNA-seq datasets with COVID-19 patient samples, one that sequenced bronchoalveolar lavage (BAL) cells and one that sequenced peripheral blood mononuclear cells (PBMCs). The combined cell population was then analyzed with a focus on genes associated with disease severity. The immunomodulatory long non-coding RNAs (lncRNAs) NEAT1 and MALAT1 were highly differentially expressed between mild and severe patients in multiple cell types. Within those same cell types, the concurrent detection of other severity-associated genes involved in cellular stress response and apoptosis regulation suggests that the pro-inflammatory functions of these lncRNAs may foster cell stress and damage. Thus, NEAT1 and MALAT1 are potential components of immune dysregulation in COVID-19 that may provide targets for severity related diagnostic measures or therapy.


2021 ◽  
Author(s):  
Emily Stephenson ◽  
◽  
Gary Reynolds ◽  
Rachel A. Botting ◽  
Fernando J. Calero-Nieto ◽  
...  

AbstractAnalysis of human blood immune cells provides insights into the coordinated response to viral infections such as severe acute respiratory syndrome coronavirus 2, which causes coronavirus disease 2019 (COVID-19). We performed single-cell transcriptome, surface proteome and T and B lymphocyte antigen receptor analyses of over 780,000 peripheral blood mononuclear cells from a cross-sectional cohort of 130 patients with varying severities of COVID-19. We identified expansion of nonclassical monocytes expressing complement transcripts (CD16+C1QA/B/C+) that sequester platelets and were predicted to replenish the alveolar macrophage pool in COVID-19. Early, uncommitted CD34+ hematopoietic stem/progenitor cells were primed toward megakaryopoiesis, accompanied by expanded megakaryocyte-committed progenitors and increased platelet activation. Clonally expanded CD8+ T cells and an increased ratio of CD8+ effector T cells to effector memory T cells characterized severe disease, while circulating follicular helper T cells accompanied mild disease. We observed a relative loss of IgA2 in symptomatic disease despite an overall expansion of plasmablasts and plasma cells. Our study highlights the coordinated immune response that contributes to COVID-19 pathogenesis and reveals discrete cellular components that can be targeted for therapy.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ailu Chen ◽  
Maria P. Diaz-Soto ◽  
Miguel F. Sanmamed ◽  
Taylor Adams ◽  
Jonas C. Schupp ◽  
...  

Abstract Background Asthma has been associated with impaired interferon response. Multiple cell types have been implicated in such response impairment and may be responsible for asthma immunopathology. However, existing models to study the immune response in asthma are limited by bulk profiling of cells. Our objective was to Characterize a model of peripheral blood mononuclear cells (PBMCs) of patients with severe asthma (SA) and its response to the TLR3 agonist Poly I:C using two single-cell methods. Methods Two complementary single-cell methods, DropSeq for single-cell RNA sequencing (scRNA-Seq) and mass cytometry (CyTOF), were used to profile PBMCs of SA patients and healthy controls (HC). Poly I:C-stimulated and unstimulated cells were analyzed in this study. Results PBMCs (n = 9414) from five SA (n = 6099) and three HC (n = 3315) were profiled using scRNA-Seq. Six main cell subsets, namely CD4 + T cells, CD8 + T cells, natural killer (NK) cells, B cells, dendritic cells (DCs), and monocytes, were identified. CD4 + T cells were the main cell type in SA and demonstrated a pro-inflammatory profile characterized by increased JAK1 expression. Following Poly I:C stimulation, PBMCs from SA had a robust induction of interferon pathways compared with HC. CyTOF profiling of Poly I:C stimulated and unstimulated PBMCs (n = 160,000) from the same individuals (SA = 5; HC = 3) demonstrated higher CD8 + and CD8 + effector T cells in SA at baseline, followed by a decrease of CD8 + effector T cells after poly I:C stimulation. Conclusions Single-cell profiling of an in vitro model using PBMCs in patients with SA identified activation of pro-inflammatory pathways at baseline and strong response to Poly I:C, as well as quantitative changes in CD8 + effector cells. Thus, transcriptomic and cell quantitative changes are associated with immune cell heterogeneity in this model to evaluate interferon responses in severe asthma.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rongxin Fang ◽  
Sebastian Preissl ◽  
Yang Li ◽  
Xiaomeng Hou ◽  
Jacinta Lucero ◽  
...  

AbstractIdentification of the cis-regulatory elements controlling cell-type specific gene expression patterns is essential for understanding the origin of cellular diversity. Conventional assays to map regulatory elements via open chromatin analysis of primary tissues is hindered by sample heterogeneity. Single cell analysis of accessible chromatin (scATAC-seq) can overcome this limitation. However, the high-level noise of each single cell profile and the large volume of data pose unique computational challenges. Here, we introduce SnapATAC, a software package for analyzing scATAC-seq datasets. SnapATAC dissects cellular heterogeneity in an unbiased manner and map the trajectories of cellular states. Using the Nyström method, SnapATAC can process data from up to a million cells. Furthermore, SnapATAC incorporates existing tools into a comprehensive package for analyzing single cell ATAC-seq dataset. As demonstration of its utility, SnapATAC is applied to 55,592 single-nucleus ATAC-seq profiles from the mouse secondary motor cortex. The analysis reveals ~370,000 candidate regulatory elements in 31 distinct cell populations in this brain region and inferred candidate cell-type specific transcriptional regulators.


2021 ◽  
Author(s):  
Cantong Zhang ◽  
Xiaoping Hong ◽  
Haiyan Yu ◽  
Hongwei Wu ◽  
Huixuan Xu ◽  
...  

Abstract Rheumatoid arthritis is a chronic autoinflammatory disease with an elusive etiology. Assays for transposase-accessible chromatin with single-cell sequencing (scATAC-seq) contribute to the progress in epigenetic studies. However, the impact of epigenetic technology on autoimmune diseases has not been objectively analyzed. Therefore, scATAC-seq was performed to generate a high-resolution map of accessible loci in peripheral blood mononuclear cells (PBMCs) of RA patients at the single-cell level. The purpose of our project was to discover the transcription factors (TFs) that were involved in the pathogenesis of RA at single-cell resolution. In our research, we obtained 22 accessible chromatin patterns. Then, 10 key TFs were involved in the RA pathogenesis by regulating the activity of MAP kinase. Consequently, two genes (PTPRC, SPAG9) regulated by 10 key TFs were found that may be associated with RA disease pathogenesis and these TFs were obviously enriched in RA patients (p<0.05, FC>1.2). With further qPCR validation on PTPRC and SPAG9 in monocytes, we found differential expression of these two genes, which were regulated by eight TFs (ZNF384, HNF1B, DMRTA2, MEF2A, NFE2L1, CREB3L4 (var. 2), FOSL2::JUNB (var. 2), MEF2B). What is more, the eight TFs showed highly accessible binding sites in RA patients. These findings demonstrate the value of using scATAC-seq to reveal transcriptional regulatory variation in RA-derived PBMCs, providing insights on therapy from an epigenetic perspective.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4968
Author(s):  
Samuel García-Arellano ◽  
Luis Alexis Hernández-Palma ◽  
Sergio Cerpa-Cruz ◽  
Gabriela Athziri Sánchez-Zuno ◽  
Melva Guadalupe Herrera-Godina ◽  
...  

Rheumatoid arthritis (RA) is an autoimmune inflammatory joint disease with complex pathogenesis associated with cytokine dysregulation. Macrophage migration inhibitory factor (MIF) plays a role in systemic inflammation and joint destruction in RA and could be associated with the secretion of other immune-modulatory cytokines such as IL-25, IL-31, and IL-33. For the above, our main aim was to evaluate the IL-25, IL-31, and IL-33 secretion from recombinant human MIF (rhMIF)-stimulated peripheral blood mononuclear cells (PBMC) of RA patients. The rhMIF and lipopolysaccharide (LPS) plus rhMIF stimuli promote the secretion of IL-25, IL-31, and IL-33 (p < 0.05) from PBMC of RA patients. The study groups, the different stimuli, and the interaction between both showed a statistically significant effect on the secretion of IL-25 (p < 0.05) and IL-31 (p < 0.01). The study of the effect of the RA patient treatments and their interaction with the effect of stimuli did not show an interaction between them. In conclusion, our study generates new evidence for the role of MIF in the secretion of IL-25, IL-31, and IL-33 and its immunomodulatory effect on RA.


2021 ◽  
Author(s):  
Zhibin Li ◽  
chengcheng Sun ◽  
Fei Wang ◽  
Xiran Wang ◽  
Jiacheng Zhu ◽  
...  

Background: Immune cells play important roles in mediating immune response and host defense against invading pathogens. However, insights into the molecular mechanisms governing circulating immune cell diversity among multiple species are limited. Methods: In this study, we compared the single-cell transcriptomes of 77 957 immune cells from 12 species using single-cell RNA-sequencing (scRNA-seq). Distinct molecular profiles were characterized for different immune cell types, including T cells, B cells, natural killer cells, monocytes, and dendritic cells. Results: The results revealed the heterogeneity and compositions of circulating immune cells among 12 different species. Additionally, we explored the conserved and divergent cellular cross-talks and genetic regulatory networks among vertebrate immune cells. Notably, the ligand and receptor pair VIM-CD44 was highly conserved among the immune cells. Conclusions: This study is the first to provide a comprehensive analysis of the cross-species single-cell atlas for peripheral blood mononuclear cells (PBMCs). This research should advance our understanding of the cellular taxonomy and fundamental functions of PBMCs, with important implications in evolutionary biology, developmental biology, and immune system disorders


2019 ◽  
Vol 38 (4) ◽  
pp. 1085-1095
Author(s):  
Jeroen Roosendaal ◽  
Hilde Rosing ◽  
Luc Lucas ◽  
Abadi Gebretensae ◽  
Alwin D. R. Huitema ◽  
...  

Summary Purpose The objective of this mass balance trial was to determine the excretory pathways and metabolic profile of the novel anticancer agent guadecitabine in humans after administration of a 14C-radiolabeled dose of guadecitabine. Experimental design Included patients received at least one cycle of 45 mg/m2 guadecitabine subcutaneously as once-daily doses on Days 1 to 5 of a 28-day cycle, of which the 5th (last) dose in the first cycle was spiked with 14C-radiolabeled guadecitabine. Using different mass spectrometric techniques in combination with off-line liquid scintillation counting, the exposure and excretion of 14C-guadecitabine and metabolites in the systemic circulation, excreta, and intracellular target site were established. Results Five patients were enrolled in the mass balance trial. 14C-guadecitabine radioactivity was rapidly and almost exclusively excreted in urine, with an average amount of radioactivity recovered of 90.2%. After uptake in the systemic circulation, guadecitabine was converted into ß-decitabine (active anomer), and from ß-decitabine into the presumably inactive metabolites M1-M5. All identified metabolites in plasma and urine were ß-decitabine related products, suggesting almost complete conversion via cleavage of the phosphodiester bond between ß-decitabine and deoxyguanosine prior to further elimination. ß-decitabine enters the intracellular activation pathway, leading to detectable ß-decitabine-triphosphate and DNA incorporated ß-decitabine levels in peripheral blood mononuclear cells, providing confirmation that the drug reaches its DNA target site. Conclusion The metabolic and excretory pathways of guadecitabine and its metabolites were successfully characterized after subcutaneous guadecitabine administration in cancer patients. These data support the clinical evaluation of safety and efficacy of the subcutaneous guadecitabine drug product.


Sign in / Sign up

Export Citation Format

Share Document