scholarly journals Genome-wide analysis of autophagy-related genes in Medicago truncatula highlights their roles in seed development and response to drought stress

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mingkang Yang ◽  
Liping Wang ◽  
Chumin Chen ◽  
Xu Guo ◽  
Chuanglie Lin ◽  
...  

AbstractAutophagy is a highly conserved process of degradation of cytoplasmic constituents in eukaryotes. It is involved in the growth and development of plants, as well as in biotic and abiotic stress response. Although autophagy-related (ATG) genes have been identified and characterized in many plant species, little is known about this process in Medicago truncatula. In this study, 39 ATGs were identified, and their gene structures and conserved domains were systematically characterized in M. truncatula. Many cis-elements, related to hormone and stress responsiveness, were identified in the promoters of MtATGs. Phylogenetic and interaction network analyses suggested that the function of MtATGs is evolutionarily conserved in Arabidopsis and M. truncatula. The expression of MtATGs, at varied levels, was detected in all examined tissues. In addition, most of the MtATGs were highly induced during seed development and drought stress, which indicates that autophagy plays an important role in seed development and responses to drought stress in M. truncatula. In conclusion, this study gives a comprehensive overview of MtATGs and provides important clues for further functional analysis of autophagy in M. truncatula.

2020 ◽  
Author(s):  
Mingkang Yang ◽  
Liping Wang ◽  
Xu Guo ◽  
Chuanglie Lin ◽  
Wei Huang ◽  
...  

Abstract Background: Autophagy is a highly conserved degradation process of cytoplasmic constituents in eukaryotes. Autophagy is known to be involved in the regulation of plant growth and development, as well as biotic and abiotic stress response. Although autophagy-related genes (ATGs) have been identified and characterized in many plant species, little is known about the autophagy process in Medicago truncatula. Results: In this study, 39 ATGs were identified in M. truncatula (MtATGs), and the gene structures and conserved domains of MtATGs were systematically characterized. In addition, many cis-elements which are related to hormone and stress responsiveness were identified in the promoters of MtATGs. Furthermore, phylogenetic analysis and interaction network analysis suggested that the function of MtATGs is evolutionarily conserved in Arabidopsis and M. truncatula. Gene expression analysis showed that most MtATGs were largely induced during seed development, but repressed by nodulation. Moreover, MtATGs were up-regulated in response to salt and drought stresses.Conclusion: These results provide a comprehensive overview of the MtATGs, which provided important clues for further functional analysis of autophagy in M. truncatula.


2018 ◽  
Vol 19 (9) ◽  
pp. 2633 ◽  
Author(s):  
Jiangfei Chen ◽  
Tong Gao ◽  
Siqing Wan ◽  
Yongheng Zhang ◽  
Jiankun Yang ◽  
...  

Heat shock proteins (HSPs) function as molecular chaperones. These proteins are encoded by a multigene family whose members play crucial roles in plant growth, development and stress response. However, little is known about the HSP gene superfamily in tea plant. In this study, a total of 47 CsHSP genes were identified, including 7 CsHSP90, 18 CsHSP70, and 22 CssHSP genes. Phylogenetic and composition analyses showed that CsHSP proteins in the same subfamily have similar gene structures and conserved motifs, but significant differences exist in the different subfamilies. In addition, expression analysis revealed that almost all CsHSP genes were specifically expressed in one or more tissues, and significantly induced under heat and drought stress, implying that CsHSP genes play important roles in tea plant growth, development, and response to heat and drought stress. Furthermore, a potential interaction network dominated by CsHSPs, including HSP70/HSP90 organizing protein (HOP) and heat shock transcription factor (HSF), is closely related to the abovementioned processes. These results increase our understanding of CsHSP genes and their roles in tea plant, and thus, this study could contribute to the cloning and functional analysis of CsHSP genes and their encoded proteins in the future.


2021 ◽  
Vol 22 (14) ◽  
pp. 7537
Author(s):  
Yuanyuan Zhao ◽  
Junchao Zhang ◽  
Zhanmin Sun ◽  
Yixiong Tang ◽  
Yanmin Wu

Polycomb group (PcG) proteins, which are important epigenetic regulators, play essential roles in the regulatory networks involved in plant growth, development, and environmental stress responses. Currently, as far as we know, no comprehensive and systematic study has been carried out on the PcG family in Medicago truncatula. In the present study, we identified 64 PcG genes with distinct gene structures from the M. truncatula genome. All of the PcG genes were distributed unevenly over eight chromosomes, of which 26 genes underwent gene duplication. The prediction of protein interaction network indicated that 34 M. truncatula PcG proteins exhibited protein–protein interactions, and MtMSI1;4 and MtVRN2 had the largest number of protein–protein interactions. Based on phylogenetic analysis, we divided 375 PcG proteins from 27 species into three groups and nine subgroups. Group I and Group III were composed of five components from the PRC1 complex, and Group II was composed of four components from the PRC2 complex. Additionally, we found that seven PcG proteins in M. truncatula were closely related to the corresponding proteins of Cicer arietinum. Syntenic analysis revealed that PcG proteins had evolved more conservatively in dicots than in monocots. M. truncatula had the most collinearity relationships with Glycine max (36 genes), while collinearity with three monocots was rare (eight genes). The analysis of various types of expression data suggested that PcG genes were involved in the regulation and response process of M. truncatula in multiple developmental stages, in different tissues, and for various environmental stimuli. Meanwhile, many differentially expressed genes (DEGs) were identified in the RNA-seq data, which had potential research value in further studies on gene function verification. These findings provide novel and detailed information on the M. truncatula PcG family, and in the future it would be helpful to carry out related research on the PcG family in other legumes.


2021 ◽  
Vol 15 (8) ◽  
pp. 927-936 ◽  
Author(s):  
Yan Peng ◽  
Yuewu Liu ◽  
Xinbo Chen

Background: Drought is one of the most damaging and widespread abiotic stresses that can severely limit the rice production. MicroRNAs (miRNAs) act as a promising tool for improving the drought tolerance of rice and have become a hot spot in recent years. Objective: In order to further extend the understanding of miRNAs, the functions of miRNAs in rice under drought stress are analyzed by bioinformatics. Method: In this study, we integrated miRNAs and genes transcriptome data of rice under the drought stress. Some bioinformatics methods were used to reveal the functions of miRNAs in rice under drought stress. These methods included target genes identification, differentially expressed miRNAs screening, enrichment analysis of DEGs, network constructions for miRNA-target and target-target proteins interaction. Results: (1) A total of 229 miRNAs with differential expression in rice under the drought stress, corresponding to 73 rice miRNAs families, were identified. (2) 1035 differentially expressed genes (DEGs) were identified, which included 357 up-regulated genes, 542 down-regulated genes and 136 up/down-regulated genes. (3) The network of regulatory relationships between 73 rice miRNAs families and 1035 DEGs was constructed. (4) 25 UP_KEYWORDS terms of DEGs, 125 GO terms and 7 pathways were obtained. (5) The protein-protein interaction network of 1035 DEGs was constructed. Conclusion: (1) MiRNA-regulated targets in rice might mainly involve in a series of basic biological processes and pathways under drought conditions. (2) MiRNAs in rice might play critical roles in Lignin degradation and ABA biosynthesis. (3) MiRNAs in rice might play an important role in drought signal perceiving and transduction.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1204
Author(s):  
Xinqiao Zhan ◽  
Yichun Qian ◽  
Bizeng Mao

Dendrobium catenatum, a valuable Chinese herb, frequently experiences abiotic stresses, such as cold and drought, under natural conditions. Nonphosphorus glycerolipid synthase (NGLS) genes are closely linked to the homeostasis of membrane lipids under abiotic stress in plants. However, there is limited information on NGLS genes in D. catenatum. In this study, a total of eight DcaNGLS genes were identified from the D. catenatum genome; these included three monogalactosyldiacylglycerol synthase (DcaMGD1, 2, 3) genes, two digalactosyldiacylglycerol synthase (DcaDGD1, 2) genes, and three sulfoquinovosyldiacylglycerol synthase (DcaSQD1, 2.1, 2.2) genes. The gene structures and conserved motifs in the DcaNGLSs showed a high conservation during their evolution. Gene expression profiling showed that the DcaNGLSs were highly expressed in specific tissues and during rapid growth stages. Furthermore, most DcaNGLSs were strongly induced by freezing and post-freezing recovery. DcaMGD1 and DcaSQDs were greatly induced by salt stress in leaves, while DcaDGDs were primarily induced by salt stress in roots. Under drought stress, most DcaNGLSs were regulated by circadian rhythms, and DcaSQD2 was closely associated with drought recovery. Transcriptome analysis also revealed that MYB might be regulated by circadian rhythm and co-expressed with DcaNGLSs under drought stress. These results provide insight for the further functional investigation of NGLS and the regulation of nonphosphorus glycerolipid biosynthesis in Dendrobium.


2021 ◽  
Vol 22 (6) ◽  
pp. 2906
Author(s):  
Urszula Talar ◽  
Agnieszka Kiełbowicz-Matuk

B-box proteins represent diverse zinc finger transcription factors and regulators forming large families in various plants. A unique domain structure defines them—besides the highly conserved B-box domains, some B-box (BBX) proteins also possess CCT domain and VP motif. Based on the presence of these specific domains, they are mostly classified into five structural groups. The particular members widely differ in structure and fulfill distinct functions in regulating plant growth and development, including seedling photomorphogenesis, the anthocyanins biosynthesis, photoperiodic regulation of flowering, and hormonal pathways. Several BBX proteins are additionally involved in biotic and abiotic stress response. Overexpression of some BBX genes stimulates various stress-related genes and enhanced tolerance to different stresses. Moreover, there is evidence of interplay between B-box and the circadian clock mechanism. This review highlights the role of BBX proteins as a part of a broad regulatory network in crop plants, considering their participation in development, physiology, defense, and environmental constraints. A description is also provided of how various BBX regulators involved in stress tolerance were applied in genetic engineering to obtain stress tolerance in transgenic crops.


2021 ◽  
Vol 22 (4) ◽  
pp. 2053
Author(s):  
Judit Bányai ◽  
Marco Maccaferri ◽  
László Láng ◽  
Marianna Mayer ◽  
Viola Tóth ◽  
...  

A detailed study was made of changes in the plant development, morphology, physiology and yield biology of near-isogenic lines of spring durum wheat sown in the field with different plant densities in two consecutive years (2013–2014). An analysis was made of the drought tolerance of isogenic lines selected for yield QTLs (QYld.idw-2B and QYld.idw-3B), and the presence of QTL effects was examined in spring sowings. Comparisons were made of the traits of the isogenic pairs QYld.idw-3B++ and QYld.idw-3B−− both within and between the pairs. Changes in the polyamine content, antioxidant enzyme activity, chlorophyll content of the flag leaf and the normalized difference vegetation index (NDVI) of the plot were monitored in response to drought stress, and the relationship between these components and the yield was analyzed. In the case of moderate stress, differences between the NIL++ and NIL−− pairs appeared in the early dough stage, indicating that the QYld.idw-3B++ QTL region was able to maintain photosynthetic activity for a longer period, resulting in greater grain number and grain weight at the end of the growing period. The chlorophyll content of the flag leaf in phenophases Z77 and Z83 was significantly correlated with the grain number and grain weight of the main spike. The grain yield was greatly influenced by the treatment, while the genotype had a significant effect on the thousand-kernel weight and on the grain number and grain weight of the main spike. When the lines were compared in the non-irrigated treatment, significantly more grains and significantly higher grain weight were observed in the main spike in NIL++ lines, confirming the theory that the higher yields of the QYld.idw-3B++ lines when sown in spring and exposed to drought stress could be attributed to the positive effect of the “Kofa” QTL on chromosome 3B.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8471 ◽  
Author(s):  
Lei Ling ◽  
Yue Qu ◽  
Jintao Zhu ◽  
Dan Wang ◽  
Changhong Guo

Valine-glutamine (VQ) proteins are plant-specific proteins that play crucial roles in plant development as well as biotic and abiotic stress responses. VQ genes have been identified in various plants; however, there are no systematic reports in Cicer arietinum or Medicago truncatula. Herein, we identified 19 and 32 VQ genes in C. arietinum and M. truncatula, respectively. A total of these VQ genes were divided into eight groups (I–VIII) based on phylogenetic analysis. Gene structure analyses and motif patterns revealed that these VQ genes might have originated from a common ancestor. In silico analyses demonstrated that these VQ genes were expressed in different tissues. qRT-PCR analysis indicated that the VQ genes were differentially regulated during multiple abiotic stresses. This report presents the first systematic analysis of VQ genes from C. arietinum and M. truncatula and provides a solid foundation for further research of the specific functions of VQ proteins.


Sign in / Sign up

Export Citation Format

Share Document