scholarly journals Crop performance and soil fertility improvement using organic fertilizer produced from valorization of Carica papaya fruit peel

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. O. Dahunsi ◽  
S. Oranusi ◽  
V. E. Efeovbokhan ◽  
A. T. Adesulu-Dahunsi ◽  
J. O. Ogunwole

AbstractIn recent times, research attention is focusing on harnessing agricultural wastes for the production of value-added products. In this study, the valorization of Carica papaya (Pawpaw) fruit peels was evaluated for the production of quality organic fertilizer via anaerobic digestion (AD) while the effects of the fertilizer on maize crop were also assessed. Pawpaw peel was first pretreated by thermo-alkaline methods before AD and analyses were carried out using standard methods. The resulting digestate was rich in nutrients and was dewatered to form solid organic fertilizer rich in microbes and soil nutrients. When applied to maize plants, organic fertilizer showed a better effect on plant traits than NPK 15–15–15 fertilizer and without fertilizer application. These were more pronounced at mid to high organic fertilizer applications (30-to-60-kg nitrogen/hectare (kg N/ha)) rate. Comparison between the values obtained from the field experiments reveals that the organic fertilizer showed better performance in all parameters such as the number of leaves, leaf area, plant height, stem girth, total shoot, and root biomass, and length of the root. However, the chemical fertilizer outperformed all the organic fertilizer applied rates in the average highest size of the corn ear by 1.4%. After harvesting, nutrient elements were found to have bioaccumulated in plant organs (leaves, stem, and root) with the highest values being 29.7 mg/L for nitrogen in the leaf and this value was reported from the experiment with 50 kg N/ha. For phosphorus and potassium, the highest concentrations of 7.05 and 8.4 mg/L were recorded in the plant’ stem of the experiment with 50 kg N/ha. All the treated soils recorded an increase in values of all nutrient elements over the control with the highest values recorded in the experiment with 60 kg N/ha. In soil with 60 kg N/ha, the nitrogen, phosphorus, and potassium increased by 28, 40, and 22% respectively over the chemical fertilizer applied experiment while different levels of increases were also recorded for all other macro and microelements in all the experiments. Thus, agricultural practices by using anaerobic digestates as organic fertilizers is a sustainable method to overcome the dependence on inorganic fertilizers high rate.

2018 ◽  
Vol 10 (1) ◽  
pp. 92-96
Author(s):  
Hamed KESHAVARZ ◽  
Seyed Ali Mohammad MODARRES SANAVY

Two species of mint Mentha piperitha (peppermint) and M. arvensis (Japanese mint) are widely cultivated in Iran, but their response to fertilizer regime has not been evaluated so far. A field experiment was conducted to investigate the effects of different organic and chemical fertilizer treatments [Control, 100% urea (95 kg N ha−1), 75% urea (71.25 kg N ha-1) + 25% vermicompost (3.3 t ha-1), 50% urea (47.5 kg N ha-1) + 50% vermicompost (6.75 t ha-1), 25% urea (23.75 kg N ha-1) + 75% vermicompost (10.1 t ha-1) and 100% vermicompost (13.5 ton ha-1)] on essential oil contents, yield and yield components of the two species of mint. Peppermint provided grater plant height, number of internodes, number of leaf and oil percentage compared with the Japanese mint under study. The results indicated that, irrespective of the mint species, plants treated with combined chemical and organic fertilizer presented taller plants, higher oil contents and oil yield compared with solo chemical or organic fertilizers. Oil percentage and essential oil yield of mint increased significantly under the treatment with 25% urea (23.75 kg N ha−1) + 75% vermicompost (10.1 t ha-1). Plant height and number of leaf increased along the replacement of organic fertilizer with chemical fertilizers. The results showed that there was a positive and significant correlation with leaf number and essential oil yield. Application of vermicompost in combination with chemical fertilizer increased plant height, oil percentage and essential oil in both species, suggesting that organic and chemical fertilizer combination improves performance and environmental sustainability.


2020 ◽  
Vol 1 (2) ◽  
pp. 89
Author(s):  
Mohammad Dian Kurniawan ◽  
Deny Andesta ◽  
Nina Aini Mahbubah

Fertilization is an action in plant care. Fertilization provides additional nutrients for the soil. Fertilization has a large influence on plant growth and production. Fertilization consists of organic and inorganic fertilizers. Both of these fertilizers must be balanced so that the nutrient content can be maintained properly. The use of fertilizers an organic fertilizer that is widely used, but the use of chemical fertilizers on an ongoing basis will reduce the level of soil fertility. This must be balanced with organic fertilizer. One of the organic fertilizer is guano fertilizer. This fertilizer is fertilizer made from animal waste, namely bats. This fertilizer has a very good content including nitrogen, phosphorus, and potassium. Knowledgethis fertilizer will still be low, so that an introduction and practice about guano fertilizer is needed. Therefore a community service activity was carried out on the development of the manufacture of guano fertilizer. Guano fertilizer development is carried out in the form of granules (granules). The targets of this service are vocational students who are related to agriculture. Vocational students are selected as the young generation to know about organic fertilizers and are able to contribute to the implementation of the agricultural industry. Community service activities were carried out with a presentation of the theory and practice of making guano fertilizer. As a result of this activity, students learned about organic fertilizer, namely guano fertilizer and its contents, nutrient content in the soil, balance in maintaining nutrient content in the soil, the practice of making guano fertilizer, and the creation of granule form from guano fertilizer.


2021 ◽  
Vol 74 (3) ◽  
pp. 9643-9653
Author(s):  
Ratih Sandrakirana ◽  
Zainal Arifin

Soybean is known for its high protein content, which is the reason why it is widely used as one of the main food sources for humans and animals. In order to optimize soybean growth, farmers tend to add excessive dosage of chemical fertilizer to this crop. Furthermore, a continuous chemical fertilizer application without organic fertilizer addition may cause a rapid depletion of nutrients in the soil. This study aimed to evaluate the effectiveness of organic fertilizer treatment to reduce the amount of urea as chemical fertilizer needed in soybean cultivation. A complete randomized design was conducted using 21 treatments of organic and chemical fertilizer in triplicate with a 4x3 m plot size. Analysis of variance was carried out to compare the means of measurement data and Duncan multiple range test (DMRT 5%) was applied. The treatment 2,000 kg ha-1 compost + 50 kg ha-1 urea (O2K2A1) resulted the highest dry yield in soybean and had significant differences with urea-only treatment. A mixture of chemical and organic fertilizers had no significant result over the yield compared to the use of chemical fertilizer only. Compost application of 1,000-2,000 kg ha-1 with urea 50-100 kg ha-1 (O2K2A1 and O 2K1A2) showed an increase in seed yield of 35-38 % with a profit reaching 333-340 USD ha-1 compared to standard treatment using urea 50 kg ha -1 + SP-36 50 kg ha-1 + 50 KCl kg ha-1 (O0K0A1).


2018 ◽  
Vol 10 (10) ◽  
pp. 3715 ◽  
Author(s):  
Xinjian Chen ◽  
Di Zeng ◽  
Ying Xu ◽  
Xiaojun Fan

Overuse of chemical fertilizer has led to severe land degradation and environmental pollution in China. Switching to organic fertilizer may improve soil quality and reduce pollution, which is meaningful to the sustainable development of Chinese agriculture. This study examines how farmers’ perceptions and risk preference affect their organic fertilizer investment using a representative rural household survey from Guangxi, a major agricultural region in China. Tobit and double-hurdle models are used to empirically test their impacts on organic fertilizer adoption and investment. An ordinary least squares model is used to regress chemical fertilizer use on the same set of explanatory variables to compare and contrast farmers’ different fertilizer investment behaviors. It is found that both organic fertilizer perceptions and risk attitude significantly affect organic fertilizer investment. Perceived yield-increasing and quality-improving effects encourage organic fertilizer investment, while perceived cost increases discourage it. Moreover, risk-averse farmers are more likely to invest in organic fertilizers. Most of the perceptions affecting organic fertilizer investment have an opposite impact on chemical fertilizer investment, which suggests substitutability between organic and chemical fertilizer. Interventions that aim to improve farmers’ perceptions of organic fertilizer and illustrate its risk-reduction effect could be effective in promoting organic fertilizer use, which can help achieve China’s sustainable development of agriculture.


2020 ◽  
Vol 222 ◽  
pp. 03020
Author(s):  
Andrei Kuzin ◽  
Alexei Solovchenko ◽  
Ludmila Stepantsova ◽  
Grigory Pugachev

Intensification of horticulture in Russia involves planting of new high-density orchards with drip irrigation and fertigation as well as intensification of the exploitation of traditional orchards. This approach involves an increase in mineral fertilizer application imposing the risk of soil fertility loss. For several reasons, the use of traditional organic fertilizers like manure in orchards is currently marginal. Although bacteria-based biofertilizers cannot substitute mineral fertilizers completely, they can significantly reduce the need for mineral fertilizer application. The effect of microbial biofertilizers of the brands “Azotovit” (Azotobacter chroococcum), “Phosphatovit” (Bacillus mucilaginosus), as well as a mixture of bacteria and the fungus, “Organic” (Azotobacter chroococcum, Bacillus subtilis, Bacillus megaterium, Trichoderma harzian) was studied in two field experiments. In the experiment #1, the preparations “Azotovit” and “Phosphatovit” were delivered through a drip irrigation system in various combinations with mineral fertilizers. In experiment #2, the preparation “Organic” was also applied to the soil with irrigation water, also in combination with the mineral fertilizer. When solely applied, none of the studied preparations changed significantly the soil nutrient content and yield as compared with the variant fertilized by the mineral fertilizer at the maximum studied application rate. The combination of the microbial biofertilizer and mineral fertilizers applied at a low rate ensured the yield commensurate to that obtained under high-rate application of the mineral fertilizer.


2021 ◽  
Vol 5 ◽  
Author(s):  
Ryosuke Kitamura ◽  
Chiho Sugiyama ◽  
Kaho Yasuda ◽  
Arata Nagatake ◽  
Yiran Yuan ◽  
...  

Reduction of chemical fertilizers and effective use of livestock excrement are required for the realization of sustainable agriculture and reduction of greenhouse gas (GHG) emissions. The purpose of this study was to estimate the reduction rate of GHG emissions represented by comparing global warming potential (GWP) using organic fertilizers instead of chemical fertilizers. The study was conducted in a managed grassland on Andosol in southern Hokkaido for 3 years from May 2017 to April 2020. There were five treatment plots: no fertilizer, chemical fertilizer, manure, slurry, and digestive fluid. Organic fertilizers were applied such that the amount of NPK did not exceed the recommended application rate, and the shortage was supplemented with chemical fertilizers. Fluxes in CO2 caused by heterotrophic respiration (RH), CH4, and N2O were measured using the closed chamber method. Net ecosystem carbon balance (NECB) was obtained as net primary production + organic fertilizer application—RH—harvest. The GWP was estimated by CO2 equivalent NECB and CH4 and N2O emissions in each treatment. Chemical fertilizer nitrogen application rates in the organic fertilizer treatments were reduced by 10% for manure, 19.7% for slurry and 29.7% for digestive fluid compared to chemical fertilizer only, but the grass yields were not significantly different among the fertilizer treatments. The 3-year NECB showed significantly smallest carbon loss in manure treatment, and smaller carbon loss in the organic fertilizer treatments than in the chemical fertilizer only. The reduction rate in the GWP with use of organic fertilizers relative to that of chemical fertilizer was 16.5% for slurry, 27.0% for digestive fluid, and 36.2% for manure. The NECB accounted for more than 90% of the GWP in all treatments. CH4 emissions were < 0.1% of the GWP. On the other hand, N2O emissions accounted for more than 5% of the GWP, and was larger in the order of slurry > chemical fertilizer only > digestive fluid > manure. As a conclusion, these organic fertilizers can be used without no reduction of crop yield instead of chemical fertilizer, however, manure is the best way to increase soil carbon and to decrease GWP, followed by digestive fluid.


2021 ◽  
pp. 1-11
Author(s):  
Jonathan Ebba ◽  
Ryan W. Dickson ◽  
Paul R. Fisher ◽  
Crysta N. Harris ◽  
Todd Guerdat ◽  
...  

The overall goal was to evaluate fertilizer options for greenhouse producers, with or without a plant growth regulator (PGR) application, to improve subsequent performance of container-grown annuals. Petunia (Petunia × hybrida) was the model container-grown crop in simulated production and consumer environments. The first experiment at two locations (New Hampshire and Florida) compared strategies using water-soluble fertilizer [WSF (17N–1.8P–14.1K)], controlled-release fertilizers (CRF), and slow-release fertilizers (SRF) that were either applied throughout or at the end of the 8-week production phase [point of shipping (POS)] for petunia rooted cuttings grown in 8-inch azalea containers. In the subsequent simulated “consumer” phase, container plants were irrigated with clear water (no fertilizer) for 6 weeks. Plant performance [number of flowers, SPAD chlorophyll index, dry weight, and tissue nitrogen (N)] at the end of the consumer phase was improved by top-dressing at POS with either CRF or granular organic fertilizer (both at 2.74 g/container N), or preplant incorporation of either a typical CRF at 4.12 g/container N or a CRF with an additional prill coating to delay initial release (DCT) at 2.74 g/container. There was no carry-over benefit from applying a liquid urea-chain product (1.37 or 2.74 g/container N) or top dressing with granular methylene di-urea (2.74 g/container N), or 400 mg·L–1 N (0.2 g/container N) from a liquid organic fertilizer at POS. The consumer benefit of applying 400 mg·L–1 N (0.2 g/container N) from a WSF at POS was increased by supplementing with 235 mg·L–1 magnesium (Mg) and 10 mg·L–1 iron (Fe). A second experiment in 10-inch-diameter pots evaluated the effect on consumer performance from providing 200 or 400 mg·L–1 N of WSF with the PGR paclobutrazol, at the final 1 L/pot irrigation at POS. Application of 3 mg·L–1 paclobutrazol delayed leaf yellowing and reduced plant height, width, and shoot dry weight during the consumer phase, resulting in a more compact growth habit and higher plant quality compared with plants that received no PGR, regardless of WSF treatment. Addition of supplemental 235 mg·L–1 Mg and 10 mg·L–1 Fe to the high rate of WSF and PGR did not improve consumer performance compared with other treatments that included a PGR. Overall, the first experiment demonstrated that the most effective fertilizer strategies require a CRF or SRF that will release nutrients throughout the consumer phase, and that impact of liquid fertilizer options is limited because of lower N supply per container. A single application at POS of a high rate of WSF with supplemental Mg and Fe may have short-term benefits, for example while plants are in a retail environment. Growers should consider combining a residual fertilizer with a PGR application for premium, value-added container annuals.


2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Kristiana Kristiana ◽  
Zulfika Satria Kusharsanto ◽  
Ramos Hutapea

<p>As a region with the largest oil palm plantations in Indonesia, Pelalawan Regency is highly potential to develop a program of oil palm-cattle integration. Pelalawan has implemented the program legitimated by Regent Decree Number KPTS./524/Disnak/2012/472 regarding Zoning Regulation on the development of Oil Palm-Cattle Integration. The program of oil palm-cattle integration itself has been the basis for the Decree of the Minister of Agriculture Number 105 Year 2014 regarding the Integration of Oil Palm Plantation and Beef Cattle Farming. Moreover, the integration system of oil palm-cattle gives a lot of benefit to farmers, for example the utilization of manure as organic fertilizers could reduce farmer’s expenses for chemical fertilizers and the cattle can be an asset for them. Products made from the integrated program are solid manure, liquid organic fertilizer, fodder, biogas, and beef. To improve the competitiveness of those activities, we can analyze the value chain which includes product design, inbound logistics, operations, outbound logistics, marketing, sales, services and supporting activities. By using a value chain analysis, this study aims to provide recommendations for strengthening programs which could be implemented to improve the value-added of the products.</p><p> </p><p>Keywords: oil palm-cattle integration, value chain, value-added, industrial cluster</p>


2019 ◽  
Vol 11 (8) ◽  
pp. 2424
Author(s):  
Jianli Liao ◽  
Jun Ye ◽  
Yun Liang ◽  
Muhammad Khalid ◽  
Danfeng Huang

A high level of antioxidants in organic-produced vegetables has been attributed to soil conditions; however, little is known about the relationships between antioxidants and rhizobacteria under different fertilization treatments. A pot trial for pakchoi (Brassica campestris ssp. chinensis L.) was conducted under greenhouse conditions with: (1) control; (2) chemical fertilizer; and (3) organic fertilizer. The responses of the plant, soil properties, and rhizobacterial community were measured after 45 days of cultivation. Fertilization increased soil nutrient levels and pakchoi productivity and the reshaped rhizobacterial community structure, while no differences in rhizobacterial abundance and total diversity were observed. Generally, most plant antioxidants were negatively correlated with inorganic nitrogen (N) and positively correlated to organic N in soil. The genera of Arthrospira and Acutodesmus contained differential rhizobacteria under chemical fertilizer treatment, which are known as copiotrophs. In addition, the addition of a chemical fertilizer may stimulate organic substance turnover by the enrichment of organic compound degraders (e.g., Microbacterium and Chitinophaga) and the promotion of predicted functional pathways involved in energy metabolism. Several beneficial rhizobacteria were associated with organic fertilizer amended rhizosphere including the genera Bacillus, Mycobacterium, Actinomycetospora, and Frankia. Furthermore, Bacillus spp. were positively correlated with plant biomass and phenolic acid. Moreover, predictive functional profiles of the rhizobacterial community involved in amino acid metabolism and lipid metabolism were significantly increased under organic fertilization, which were positively correlated with plant antioxidant activity. Overall, our study suggests that the short-term application of chemical and organic fertilizers reshapes the rhizobacterial community structure, and such changes might contribute to the plant’s performance.


2017 ◽  
Vol 17 (2) ◽  
pp. 90
Author(s):  
I Gde Antha Kasmawan ◽  
Gusti Ngurah Sutapa ◽  
I Made Yuliara

In order to avoid post power syndrome, the elderly who have a hobby of farming / gardening can be empowered through the introduction of LOF (liquid organic fertilizer) making technology and its application. The aim is for the elderly to understand the technology of making organic fertilizers that are lightweight, useful and entertaining as well as for them to feel contribute in maintaining the environment. The training method applied is a combination of interactive lecture and practice methods. Based on these methods, have succeeded in growing their creativity in making LOF and feel comforted on the results obtained. Successful LOF products contained nitrogen, phosphorus and potassium (NPK) of 146,701 mg / L, 0.741 mg / L, and 0.035 mg / L, respectively, and magnesium (Mg) and calcium (Ca) of 86.332 mg / L and 1.970 mg / L. The application of LOF products has been done on the orchid plants (Phalaenopsis amabilis) with satisfactory results. Thus, the mastery of LOF making technology and its application will reduce the dependence of chemical fertilizer use and replace it with homemade organic fertilizer so it can contribute in maintaining health and environmental sustainability.


Sign in / Sign up

Export Citation Format

Share Document