scholarly journals The impact of a closed-loop thalamocortical model on the spatiotemporal dynamics of cortical and thalamic traveling waves

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sayak Bhattacharya ◽  
Matthieu B. L. Cauchois ◽  
Pablo A. Iglesias ◽  
Zhe Sage Chen

AbstractPropagation of activity in spatially structured neuronal networks has been observed in awake, anesthetized, and sleeping brains. How these wave patterns emerge and organize across brain structures, and how network connectivity affects spatiotemporal neural activity remains unclear. Here, we develop a computational model of a two-dimensional thalamocortical network, which gives rise to emergent traveling waves similar to those observed experimentally. We illustrate how spontaneous and evoked oscillatory activity in space and time emerge using a closed-loop thalamocortical architecture, sustaining smooth waves in the cortex and staggered waves in the thalamus. We further show that intracortical and thalamocortical network connectivity, cortical excitation/inhibition balance, and thalamocortical or corticothalamic delay can independently or jointly change the spatiotemporal patterns (radial, planar and rotating waves) and characteristics (speed, direction, and frequency) of cortical and thalamic traveling waves. Computer simulations predict that increased thalamic inhibition induces slower cortical frequencies and that enhanced cortical excitation increases traveling wave speed and frequency. Overall, our results provide insight into the genesis and sustainability of thalamocortical spatiotemporal patterns, showing how simple synaptic alterations cause varied spontaneous and evoked wave patterns. Our model and simulations highlight the need for spatially spread neural recordings to uncover critical circuit mechanisms for brain functions.

2019 ◽  
Author(s):  
Sayak Bhattacharya ◽  
Matthieu B. Le Cauchois ◽  
Pablo A. Iglesias ◽  
Zhe S. Chen

AbstractPropagation of neural activity in spatially structured neuronal networks has been observed in awake, anesthetized and sleeping brains. However, it remains unclear how traveling waves are coordinated temporally across recurrently connected brain structures, and how network connectivity affects spatiotemporal neural activity. Here we develop a computational model of a two-dimensional thalamocortical network that enables us to investigate traveling wave characteristics in space-time. We show that thalamocortical and intracortical network connectivity, excitation/inhibition balance, thalamocortical/corticothalamic delay can independently or jointly change the spatiotemporal patterns (radial, planar and rotating waves) and characteristics (speed, direction and frequency) of cortical and thalamic traveling waves. Simulations of our model further predict that increased thalamic inhibition induces slower cortical wave frequency, and enhanced cortical excitation increases cortical wave speed and oscillation frequencies. Overall, the model study provides not only theoretical insight into the basis for spatiotemporal wave patterns, but also experimental predictions that potentially control these dynamics.Author SummaryCognition or sensorimotor control requires the coordination of neural activity across widespread brain circuits. Propagating waves of oscillatory neural activities have been observed at both macroscopic and mesoscopic levels, with various frequencies, spatial coverage, and modalities. However, a complete understanding how thalamocortical traveling waves are originated and temporally coordinated in the thalamus and cortex are still unclear. Furthermore, it remains unknown how the network connectivity, excitation/inhibition balance, thalamocortical or corticothalamic delay determine the spatiotemporal wave patterns and characteristics of cortical and thalamic traveling waves. Here we develop a computational model of a two-dimensional thalamocortical network to investigate the thalamic and neocortical traveling wave characteristics in space-time, which allows us to quantitatively assess the impact of thalamocortical network properties on the formation and maintenance of complex traveling wave patterns. Our computational model provides strong theoretical insight into the basis of spatiotemporal wave propagation, as well as experimental predictions that control these wave dynamics.


2022 ◽  
Vol 9 ◽  
Author(s):  
Lei Yang ◽  
Qingmeng Liu ◽  
Yu Zhou ◽  
Xing Wang ◽  
Tongning Wu ◽  
...  

Neurophysiological effect of human exposure to radiofrequency signals has attracted considerable attention, which was claimed to have an association with a series of clinical symptoms. A few investigations have been conducted on alteration of brain functions, yet no known research focused on intrinsic connectivity networks, an attribute that may relate to some behavioral functions. To investigate the exposure effect on functional connectivity between intrinsic connectivity networks, we conducted experiments with seventeen participants experiencing localized head exposure to real and sham time-division long-term evolution signal for 30 min. The resting-state functional magnetic resonance imaging data were collected before and after exposure, respectively. Group-level independent component analysis was used to decompose networks of interest. Three states were clustered, which can reflect different cognitive conditions. Dynamic connectivity as well as conventional connectivity between networks per state were computed and followed by paired sample t-tests. Results showed that there was no statistical difference in static or dynamic functional network connectivity in both real and sham exposure conditions, and pointed out that the impact of short-term electromagnetic exposure was undetected at the ICNs level. The specific brain parcellations and metrics used in the study may lead to different results on brain modulation.


2019 ◽  
Author(s):  
Valerio Zerbi ◽  
Amalia Floriou-Servou ◽  
Marija Markicevic ◽  
Yannick Vermeiren ◽  
Oliver Sturman ◽  
...  

AbstractThe locus coeruleus (LC) supplies norepinephrine (NE) to the entire forebrain, regulates many fundamental brain functions, and is implicated in several neuropsychiatric diseases. Although selective manipulation of the LC is not possible in humans, studies have suggested that strong LC activation might shift network connectivity to favor salience processing. To test this hypothesis, we use a mouse model to study the impact of LC stimulation on large-scale functional connectivity by combining chemogenetic activation of the LC with resting-state fMRI, an approach we term “chemo-connectomics”. LC activation rapidly interrupts ongoing behavior and strongly increases brain-wide connectivity, with the most profound effects in the salience and amygdala networks. We reveal a direct correlation between functional connectivity changes and transcript levels of alpha-1, alpha-2, and beta-1 adrenoceptors across the brain, and a positive correlation between NE turnover and functional connectivity within select brain regions. These results represent the first brain-wide functional connectivity mapping in response to LC activation, and demonstrate a causal link between receptor expression, brain states and functionally connected large-scale networks at rest. We propose that these changes in large-scale network connectivity are critical for optimizing neural processing in the context of increased vigilance and threat detection.


2012 ◽  
Vol 220 (1) ◽  
pp. 3-9 ◽  
Author(s):  
Sandra Sülzenbrück

For the effective use of modern tools, the inherent visuo-motor transformation needs to be mastered. The successful adjustment to and learning of these transformations crucially depends on practice conditions, particularly on the type of visual feedback during practice. Here, a review about empirical research exploring the influence of continuous and terminal visual feedback during practice on the mastery of visuo-motor transformations is provided. Two studies investigating the impact of the type of visual feedback on either direction-dependent visuo-motor gains or the complex visuo-motor transformation of a virtual two-sided lever are presented in more detail. The findings of these studies indicate that the continuous availability of visual feedback supports performance when closed-loop control is possible, but impairs performance when visual input is no longer available. Different approaches to explain these performance differences due to the type of visual feedback during practice are considered. For example, these differences could reflect a process of re-optimization of motor planning in a novel environment or represent effects of the specificity of practice. Furthermore, differences in the allocation of attention during movements with terminal and continuous visual feedback could account for the observed differences.


2021 ◽  
Vol 13 (11) ◽  
pp. 6425
Author(s):  
Quanxi Li ◽  
Haowei Zhang ◽  
Kailing Liu

In closed-loop supply chains (CLSC), manufacturers, retailers, and recyclers perform their duties. Due to the asymmetry of information among enterprises, it is difficult for them to maximize efficiency and profits. To maximize the efficiency and profit of the CLSC, this study establishes five cooperation models of CLSC under the government‘s reward–penalty mechanism. We make decisions on wholesale prices, retail prices, transfer payment prices, and recovery rates relying on the Stackelberg game method and compare the optimal decisions. This paper analyzes the impact of the government reward-penalty mechanism on optimal decisions and how members in CLSC choose partners. We find that the government’s reward-penalty mechanism can effectively increase the recycling rate of used products and the total profit of the closed-loop supply chain. According to the calculation results of the models, under the government’s reward-penalty mechanism, the cooperation can improve the CLSC’s used products recycling capacity and profitability. In a supply chain, the more members participate in the cooperation, the higher profit the CLSC obtain. However, the cooperation mode of all members may lead to monopoly, which is not approved by government and customers.


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1111
Author(s):  
Maria P. Mollica ◽  
Giovanna Trinchese ◽  
Fabiano Cimmino ◽  
Eduardo Penna ◽  
Gina Cavaliere ◽  
...  

Milk contains several important nutrients that are beneficial for human health. This review considers the nutritional qualities of essential fatty acids (FAs), especially omega-3 (ω-3) and omega-6 (ω-6) polyunsaturated fatty acids (PUFAs) present in milk from ruminant and non-ruminant species. In particular, the impact of milk fatty acids on metabolism is discussed, including its effects on the central nervous system. In addition, we presented data indicating how animal feeding—the main way to modify milk fat composition—may have a potential impact on human health, and how rearing and feeding systems strongly affect milk quality within the same animal species. Finally, we have presented the results of in vivo studies aimed at supporting the beneficial effects of milk FA intake in animal models, and the factors limiting their transferability to humans were discussed.


2021 ◽  
Vol 22 (5) ◽  
pp. 2520
Author(s):  
Alba Bellot-Saez ◽  
Rebecca Stevenson ◽  
Orsolya Kékesi ◽  
Evgeniia Samokhina ◽  
Yuval Ben-Abu ◽  
...  

Potassium homeostasis is fundamental for brain function. Therefore, effective removal of excessive K+ from the synaptic cleft during neuronal activity is paramount. Astrocytes play a key role in K+ clearance from the extracellular milieu using various mechanisms, including uptake via Kir channels and the Na+-K+ ATPase, and spatial buffering through the astrocytic gap-junction coupled network. Recently we showed that alterations in the concentrations of extracellular potassium ([K+]o) or impairments of the astrocytic clearance mechanism affect the resonance and oscillatory behavior of both the individual and networks of neurons. These results indicate that astrocytes have the potential to modulate neuronal network activity, however, the cellular effectors that may affect the astrocytic K+ clearance process are still unknown. In this study, we have investigated the impact of neuromodulators, which are known to mediate changes in network oscillatory behavior, on the astrocytic clearance process. Our results suggest that while some neuromodulators (5-HT; NA) might affect astrocytic spatial buffering via gap-junctions, others (DA; Histamine) primarily affect the uptake mechanism via Kir channels. These results suggest that neuromodulators can affect network oscillatory activity through parallel activation of both neurons and astrocytes, establishing a synergistic mechanism to maximize the synchronous network activity.


Sign in / Sign up

Export Citation Format

Share Document