scholarly journals Cottonseed-derived gossypol and ethanol extracts differentially regulate cell viability and VEGF gene expression in mouse macrophages

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Heping Cao ◽  
Kandan Sethumadhavan ◽  
Xiaoyu Wu ◽  
Xiaochun Zeng

AbstractVascular endothelial growth factor (VEGF) plays an important role in chronic inflammation associated with several diseases. Many plant extracts have nutritional and healthy benefits by down-regulating VEGF expression, but there was no report on VEGF regulation by cottonseed extracts in any biological system. The objective was to investigate cell viability and VEGF expression regulated by gossypol and ethanol extracts using lipopolysaccharides (LPS) as a control. MTT, qPCR and immunoblotting techniques were used to monitor cell viability, VEGF mRNA and protein levels in mouse RAW264.7 macrophages. Gossypol dramatically reduced macrophage viability but cottonseed extracts and LPS exhibited minor effect on cell viability. VEGFb mRNA levels were approximately 40 fold of VEGFa in the macrophages. Gossypol increased VEGFa and VEGFb mRNA levels up to 27 and 4 fold, respectively, and increased VEGF protein. LPS increased VEGFa mRNA by sixfold but decreased VEGFb mRNA. LPS increased VEGF protein in 2–4 h but decreased in 8–24 h. Glanded seed extracts showed some stimulating effects on VEGF mRNA levels. Glandless seed coat extract showed increased VEGFb mRNA levels but its kernel extract reduced VEGF mRNA levels. This study demonstrated that gossypol and ethanol extracts differentially regulated cell viability and VEGF expression in mouse macrophages.

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Heping Cao ◽  
Kandan Sethumadhavan

Abstract Objectives Vascular endothelial growth factor (VEGF) is a key mediator of adipogenesis and a mitogenic and angiogenic factor involved in inflammation, tumor progression, collateral vessel formation, and diabetic retinopathy. VEGFa and VEGFb play a balance role in adipose differentiation and gene expression. Plant extracts and chemical compounds that can regulate VEGF gene expression may have positive effect on nutrition and health. The objective was to investigate the regulation of VEGF gene expression by cottonseed extracts, gossypol and lipopolysaccharides (LPS) in mouse RAW264.7 macrophages. Methods Mouse RAW264.7 macrophages were treated with various concentrations of cottonseed extracts, gossypol and LPS for 2, 8 and 24 h. qPCR and immunoblotting were used to detect the expression of VEGF mRNA and protein. Results qPCR assay showed that cottonseed extracts exhibited modest effects on VEGF gene expression with significant increases in VEGFa mRNA by glanded coat extract and VEGFb mRNA by glanded kernel and glandless coat extracts. Immunoblotting showed that only glandless seed extracts modestly increased VEGF protein. Gossypol stimulated VEGFa and VEGFb mRNA levels by 30- and 4-fold, respectively, and increased VEGF protein in macrophages. LPS increased VEGFa mRNA by 6-fold but decreased VEGFb mRNA under higher concentration for longer treatment. LPS increased VEGF protein in 2–4 h but decreased in 8–24 h. Conclusions These results demonstrate that cottonseed extracts have modest effect but gossypol and LPS have strong effect on VEGF gene expression in mouse macrophages. Funding Sources This work was supported by the USDA-ARS Quality and Utilization of Agricultural Products National Program 306 through CRIS 6054–41,000-103–00-D. USDA is an equal opportunity provider and employer.


1999 ◽  
Vol 277 (2) ◽  
pp. H595-H602 ◽  
Author(s):  
Jian-Wei Gu ◽  
Ann L. Brady ◽  
Vivek Anand ◽  
Michael C. Moore ◽  
Whitney C. Kelly ◽  
...  

We tested whether adenosine has differential effects on vascular endothelial growth factor (VEGF) expression under normoxic and hypoxic conditions, and whether A1 or A2 receptors (A1R; A2R) mediate these effects. Myocardial vascular smooth muscle cells (MVSMCs) from dog coronary artery were exposed to hypoxia (1% O2) or normoxia (20% O2) in the absence and presence of adenosine agonists or antagonists for 18 h. VEGF protein levels were measured in media with ELISA. VEGF mRNA expression was determined with Northern blot analysis. Under normoxic conditions, the adenosine A1R agonists, N 6-cyclopentyladenosine and R(-)- N 6-(2-phenylisopropyl)adenosine did not increase VEGF protein levels at A1R stimulatory concentrations. However, adenosine (5 μM) and the adenosine A2R agonist N 6-[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)]ethyl adenosine (DPMA; 100 nM) increased VEGF protein levels by 51 and 132% and increased VEGF mRNA expression by 44 and 90%, respectively, in cultured MVSMCs under normoxic conditions. Hypoxia caused an approximately fourfold increase in VEGF protein and mRNA expression, which could not be augmented with exogenous adenosine, A2R agonist (DPMA), or A1R agonist [1,3-diethyl-8-phenylxanthine (DPX)]. The A2R antagonist 8-(3-chlorostyryl)-caffeine completely blocked adenosine-induced VEGF protein and mRNA expression and decreased baseline VEGF protein levels by up to ∼60% under normoxic conditions but only by ∼25% under hypoxic conditions. The A1R antagonist DPX had no effect. These results are consistent with the hypothesis that 1) adenosine increases VEGF protein and mRNA expression by way of A2R. 2) Adenosine plays a major role as an autocrine factor regulating VEGF expression during normoxic conditions but has a relatively minor role during hypoxic conditions. 3) Endogenous adenosine can account for the majority of basal VEGF secretion by MVSMCs under normoxic conditions and could therefore be a maintenance factor for the vasculature.


2009 ◽  
Vol 297 (1) ◽  
pp. E92-E103 ◽  
Author(s):  
Lotte Leick ◽  
Ylva Hellsten ◽  
Joachim Fentz ◽  
Stine S. Lyngby ◽  
Jørgen F. P. Wojtaszewski ◽  
...  

The aim of the present study was to test the hypothesis that PGC-1α is required for exercise-induced VEGF expression in both young and old mice and that AMPK activation leads to increased VEGF expression through a PGC-1α-dependent mechanism. Whole body PGC-1α knockout (KO) and littermate wild-type (WT) mice were submitted to either 1) 5 wk of exercise training, 2) lifelong (from 2 to 13 mo of age) exercise training in activity wheel, 3) a single exercise bout, or 4) 4 wk of daily subcutaneous AICAR or saline injections. In skeletal muscle of PGC-1α KO mice, VEGF protein expression was ∼60–80% lower and the capillary-to-fiber ratio ∼20% lower than in WT. Basal VEGF mRNA expression was similar in WT and PGC-1α KO mice, but acute exercise and AICAR treatment increased the VEGF mRNA content in WT mice only. Exercise training of young mice increased skeletal muscle VEGF protein expression ∼50% in WT mice but with no effect in PGC-1α KO mice. Furthermore, a training-induced prevention of an age-associated decline in VEGF protein content was observed in WT but not in PGC-1α KO muscles. In addition, repeated AICAR treatments increased skeletal muscle VEGF protein expression ∼15% in WT but not in PGC-1α KO mice. This study shows that PGC-1α is essential for exercise-induced upregulation of skeletal muscle VEGF expression and for a training-induced prevention of an age-associated decline in VEGF protein content. Furthermore, the findings suggest an AMPK-mediated regulation of VEGF expression through PGC-1α.


Endocrinology ◽  
2009 ◽  
Vol 150 (5) ◽  
pp. 2413-2418 ◽  
Author(s):  
Mikihiro Yoshie ◽  
Eri Miyajima ◽  
Satoru Kyo ◽  
Kazuhiro Tamura

Local hypoxia that occurs during menstruation triggers angiogenesis that is crucial for cyclical remodeling of the endometrium during the menstrual cycle. Hypoxia is thought to be important for the expression of vascular endothelial growth factor (VEGF) via its transcriptional factor, hypoxia inducible factor (HIF)-1α, in the endometrium. The activation of the phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway may modulate HIF-1α protein levels. Stathmin, a microtubule regulatory protein, was expressed in the stroma, glandular epithelium, and vascular endothelium in human endometrium. In this study, we examined a possible role of stathmin in hypoxia-induced HIF-1α and VEGF expression in primary isolated and immortalized human endometrial stromal cells, glandular epithelial cells, and human umbilical venous endothelial cells (HUVEC). Knocking down stathmin expression using small interfering RNA caused microtubule stabilization and inhibited hypoxia-induced VEGF mRNA expression via the reduction of HIF-1α protein levels in endometrial cells and HUVEC. Treatment of the cells with a PI3K inhibitor, wortmannin, inhibited the expression of VEGF mRNA and the accumulation of HIF-1α protein. Silencing of stathmin expression repressed the activation (phosphorylation) of Akt in endometrial cells and HUVEC. These results suggest that endometrial stathmin is linked to HIF-1α protein accumulation and VEGF expression through the PI3K/Akt signaling pathway and may be involved in regeneration of the endometrium during the menstrual cycle in human uterine cells.


1999 ◽  
Vol 277 (4) ◽  
pp. C628-C637 ◽  
Author(s):  
Pierre B. Saadeh ◽  
Babak J. Mehrara ◽  
Douglas S. Steinbrech ◽  
Matthew E. Dudziak ◽  
Joshua A. Greenwald ◽  
...  

Angiogenesis is essential to both normal and pathological bone physiology. Vascular endothelial growth factor (VEGF) has been implicated in angiogenesis, whereas transforming growth factor-β1 (TGF-β1) modulates bone differentiation, matrix formation, and cytokine expression. The purpose of this study was to investigate the relationship between TGF-β1 and VEGF expression in osteoblasts and osteoblast-like cells. Northern blot analysis revealed an early peak of VEGF mRNA (6-fold at 3 h) in fetal rat calvarial cells and MC3T3-E1 osteoblast-like cells after stimulation with TGF-β1 (2.5 ng/ml). The stability of VEGF mRNA in MC3T3-E1 cells was not increased after TGF-β1 treatment. Actinomycin D inhibited the TGF-β1-induced peak in VEGF mRNA, whereas cycloheximide did not. Blockade of TGF-β1 signal transduction via a dominant-negative receptor II adenovirus significantly decreased TGF-β1 induction of VEGF mRNA. Additionally, TGF-β1 induced a dose-dependent increase in VEGF protein expression by MC3T3-E1 cells ( P < 0.01). Dexamethasone similarly inhibited VEGF protein expression. Both TGF-β1 mRNA and VEGF mRNA were concurrently present in rat membranous bone, and both followed similar patterns of expression during rat mandibular fracture healing (mRNA and protein). In summary, TGF-β1-induced VEGF expression by osteoblasts and osteoblast-like cells is a dose-dependent event that may be intimately related to bone development and fracture healing.


Toxics ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 53 ◽  
Author(s):  
Tania Jacobo-Estrada ◽  
Mariana Cardenas-Gonzalez ◽  
Mitzi Santoyo-Sánchez ◽  
Frank Thevenod ◽  
Olivier Barbier

During embryonic development, some hypoxia occurs due to incipient vascularization. Under hypoxic conditions, gene expression is mainly controlled by hypoxia-inducible factor 1 (HIF-1). The activity of this transcription factor can be altered by the exposure to a variety of compounds; among them is cadmium (Cd), a nephrotoxic heavy metal capable of crossing the placenta and reaching fetal kidneys. The goal of the study was to determine Cd effects on HIF-1 on embryonic kidneys. Pregnant Wistar rats were exposed to a mist of isotonic saline solution or CdCl2 (DDel = 1.48 mg Cd/kg/day), from gestational day (GD) 8 to 20. Embryonic kidneys were obtained on GD 21 for RNA and protein extraction. Results show that Cd exposure had no effect on HIF-1α and prolyl hydroxylase 2 protein levels, but it reduced HIF-1 DNA-binding ability, which was confirmed by a decrease in vascular endothelial growth factor (VEGF) mRNA levels. In contrast, the protein levels of VEGF were not changed, which suggests the activation of additional regulatory mechanisms of VEGF protein expression to ensure proper kidney development. In conclusion, Cd exposure decreases HIF-1-binding activity, posing a risk on renal fetal development.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Jun Zhu ◽  
Chengguo Su ◽  
Yuzhou Chen ◽  
Xinyu Hao ◽  
Jianzhen Jiang

Introduction. The hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) play a key role in synovial angiogenesis in rheumatoid arthritis (RA). Therefore, this study aimed to test the hypothesis that electroacupuncture (EA) may inhibit RA synovial angiogenesis via HIF-1α/VEGF expression. Methods. Sprague-Dawley rats were randomly distributed to 4 groups: control, adjuvant arthritis (AA), AA+electroacupuncture (AA+EA), and AA+sham EA groups. AA model was induced by injection of Freund's complete adjuvant in bilateral hind footpad. 3 days after injection, EA was delivered to the acupoints Zusanli (ST 36) and Xuanzhong (GB 39) once every two days for a total of 8 times in the AA+EA group, while sham EA treatment was applied in the AA+sham EA group. The arthritis score, paw volume, and H&E staining for each animal were measured. CD34 expression in synovial tissue of ankle joint was observed by immunohistochemistry. HIF-1α and VEGF mRNA and protein levels in synovial tissue were determined by real-time quantitative PCR and Western blot, respectively. Results. Compared with rats in AA group, EA stimulation significantly decreased arthritis scores, paw volume, and pathological damage of synovial tissues. Moreover, EA markedly suppressed the synovial angiogenesis of AA rats, as evidenced by reduced CD34 positive expression. Furthermore, EA significantly reduced HIF-1α and VEGF mRNA and protein levels in synovial of AA rats. Finally, the CD34 expression in synovial tissue was positively correlated with HIF-1α and VEGF protein levels. Conclusion. EA on ST36 and GB39 acupoints can effectively inhibit synovial angiogenesis in the AA rat model via downregulating HIF-1α/VEGF expression.


1995 ◽  
Vol 269 (5) ◽  
pp. H1827-H1831 ◽  
Author(s):  
J. Hang ◽  
L. Kong ◽  
J. W. Gu ◽  
T. H. Adair

Vascular endothelial growth factor (VEGF; also called vascular permeability factor) is a secreted mitogen with distinct target cell specificity for vascular endothelial cells. Hypoxia upregulates VEGF expression, making it a likely mediator of the angiogenesis that occurs in poorly perfused tissues. The purpose of this study was to determine whether VEGF gene expression is upregulated in chronically stimulated skeletal muscles, where hypoxia is thought to trigger the growth of blood vessels. The right anterior tibialis and extensor digitorum longus muscles of 12 rats were stimulated electrically (10 Hz, 300 microseconds pulses) for up to 21 days by way of the peroneal motor nerve. The contralateral muscles served as control. Northern analysis showed that VEGF mRNA levels increased by approximately sixfold after 4 days of stimulation and then decreased gradually over the next several days. VEGF mRNA levels were still elevated by two- to threefold after 21 days of stimulation. Higher VEGF mRNA levels in the early stages of muscle stimulation and gradually decreasing levels in later stages are consistent with a metabolic hypothesis in which tissue oxygenation controls VEGF expression. These studies support the hypothesis that VEGF has a physiological role in promoting angiogenesis in stimulated skeletal muscle.


Sign in / Sign up

Export Citation Format

Share Document