Analysis of dendrimer-protein interactions and their implications on potential applications of dendrimers in nanomedicine

Nanoscale ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 2703-2713
Author(s):  
James Magnus Rae ◽  
Barbara Jachimska

For the first time in literature, we show that a G5.5 PAMAM dendrimer molecule can have an effective negative or positive charge depending on environmental conditions. Control of the molecules charge enables its specific interaction with proteins.

Nanomaterials ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 149 ◽  
Author(s):  
Nuria O Nuñez ◽  
Fernando Cussó ◽  
Eugenio Cantelar ◽  
Beatriz Martin-Gracia ◽  
Jesús M de la Fuente ◽  
...  

Uniform Nd3+-doped LuVO4 nanophosphors have been synthesized for the first time in literature by using a poliol-based method at 120 °C from Nd3+ and vanadate precursors. After optimizing the Nd doping level, these phosphors present intense luminescence in the near-infrared biological windows. The X-ray attenuation capacity of the optimum nanophosphor has been found to be higher than that of a commercial X-ray computed tomography contrast agent. After surface coating with polyacrylic acid, such nanoparticles present high colloidal stability in physiological pH medium and high cell viability. Because of these properties, the developed Nd3+-doped LuVO4 nanoparticles have potential applications as a bimodal probe for NIR luminescent bioimaging and X-ray computed tomography.


2021 ◽  
Vol 43 (2) ◽  
pp. 767-781
Author(s):  
Vanessa Pinatto Gaspar ◽  
Anelise Cardoso Ramos ◽  
Philippe Cloutier ◽  
José Renato Pattaro Junior ◽  
Francisco Ferreira Duarte Junior ◽  
...  

KIN (Kin17) protein is overexpressed in a number of cancerous cell lines, and is therefore considered a possible cancer biomarker. It is a well-conserved protein across eukaryotes and is ubiquitously expressed in all cell types studied, suggesting an important role in the maintenance of basic cellular function which is yet to be well determined. Early studies on KIN suggested that this nuclear protein plays a role in cellular mechanisms such as DNA replication and/or repair; however, its association with chromatin depends on its methylation state. In order to provide a better understanding of the cellular role of this protein, we investigated its interactome by proximity-dependent biotin identification coupled to mass spectrometry (BioID-MS), used for identification of protein–protein interactions. Our analyses detected interaction with a novel set of proteins and reinforced previous observations linking KIN to factors involved in RNA processing, notably pre-mRNA splicing and ribosome biogenesis. However, little evidence supports that this protein is directly coupled to DNA replication and/or repair processes, as previously suggested. Furthermore, a novel interaction was observed with PRMT7 (protein arginine methyltransferase 7) and we demonstrated that KIN is modified by this enzyme. This interactome analysis indicates that KIN is associated with several cell metabolism functions, and shows for the first time an association with ribosome biogenesis, suggesting that KIN is likely a moonlight protein.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Leon Harrington ◽  
Jordan M. Fletcher ◽  
Tamara Heermann ◽  
Derek N. Woolfson ◽  
Petra Schwille

AbstractModules that switch protein-protein interactions on and off are essential to develop synthetic biology; for example, to construct orthogonal signaling pathways, to control artificial protein structures dynamically, and for protein localization in cells or protocells. In nature, the E. coli MinCDE system couples nucleotide-dependent switching of MinD dimerization to membrane targeting to trigger spatiotemporal pattern formation. Here we present a de novo peptide-based molecular switch that toggles reversibly between monomer and dimer in response to phosphorylation and dephosphorylation. In combination with other modules, we construct fusion proteins that couple switching to lipid-membrane targeting by: (i) tethering a ‘cargo’ molecule reversibly to a permanent membrane ‘anchor’; and (ii) creating a ‘membrane-avidity switch’ that mimics the MinD system but operates by reversible phosphorylation. These minimal, de novo molecular switches have potential applications for introducing dynamic processes into designed and engineered proteins to augment functions in living cells and add functionality to protocells.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 934
Author(s):  
Evangelos Tzamos ◽  
Micol Bussolesi ◽  
Giovanni Grieco ◽  
Pietro Marescotti ◽  
Laura Crispini ◽  
...  

The importance of magnesite for the EU economy and industry is very high, making the understanding of their genesis for the exploration for new deposits a priority for the raw materials scientific community. In this direction, the study of the magnesite-hosting ultramafic rocks can be proved very useful. For the present study, ultramafic rock samples were collected from the magnesite ore-hosting ophiolite of the Gerakini mining area (Chalkidiki, Greece) to investigate the consecutive alteration events of the rocks which led to the metallogenesis of the significant magnesite ores of the area. All samples were subjected to a series of analytical methods for the determination of their mineralogical and geochemical characteristics: optical microscopy, XRD, SEM, EMPA, ICP–MS/OES and CIPW normalization. The results of these analyses revealed that the ultramafic rocks of the area have not only all been subjected to serpentinization, but these rocks have also undergone carbonation, silification and clay alteration. The latter events are attributed to the circulation of CO2-rich fluids responsible for the formation of the magnesite ores and locally, the further alteration of the serpentinites into listvenites. The current mineralogy of these rocks was found to be linked to one or more alteration event that took place, thus a significant contribution to the metallo- and petrogenetic history of the Gerakini ophiolite has been made. Furthermore, for the first time in literature, Fe inclusions in olivines from Greece were reported.


2011 ◽  
Vol 480-481 ◽  
pp. 1065-1069
Author(s):  
Bin Liu ◽  
Lin Wang ◽  
Yin Zhong Bu ◽  
Sheng Rong Yang ◽  
Jin Qing Wang

Titanium (Ti) and its alloys have been applied in orthopedics as one of the most popular biomedical metallic implant materials. In this work, to enhance the bioactivity, the surface of Ti alloy pre-modified by silane coupling agent and glutaraldehyde was covalently grafted with chitosan (CS) via biochemical multistep self-assembled method. Then, for the first time, the achieved surface was further immobilized with casein phosphopeptides (CPP), which are one group of bioactive peptides released from caseins in the digestive tract and can facilitate the calcium adsorption and usage, to form CS-CPP biocomposite coatings. The structure and composition of the fabricated coatings were characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and atomic force microscopy (AFM). As the experimental results indicated, multi-step assembly was successfully performed, and the CS and CPP were assembled onto the Ti alloy surface orderly. It is anticipated that the Ti alloys modified by CS-CPP biocomposite coatings will find potential applications as implant materials in biomedical fields.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 518
Author(s):  
Somaye Akbari ◽  
Addie Bahi ◽  
Ali Farahani ◽  
Abbas S. Milani ◽  
Frank Ko

Blending lignin as the second most abundant polymer in Nature with nanostructured compounds such as dendritic polymers can not only add value to lignin, but also increase its application in various fields. In this study, softwood Kraft lignin/polyamidoamine dendritic polymer (PAMAM) blends were fabricated by the solution electrospinning to produce bead-free nanofiber mats for the first time. The mats were characterized through scanning electron microscopy, Fourier transform infrared (FTIR) spectroscopy, zeta potential, and thermogravimetry analyses. The chemical intermolecular interactions between the lignin functional groups and abundant amino groups in the PAMAM were verified by FTIR and viscosity measurements. These interactions proved to enhance the mechanical and thermal characteristics of the lignin/PAMAM mats, suggesting their potential applications e.g. in membranes, filtration, controlled release drug delivery, among others.


1993 ◽  
Vol 13 (1) ◽  
pp. 399-407
Author(s):  
I J McEwan ◽  
A P Wright ◽  
K Dahlman-Wright ◽  
J Carlstedt-Duke ◽  
J A Gustafsson

We have used a yeast (Saccharomyces cerevisiae) cell free transcription system to study protein-protein interactions involving the tau 1 transactivation domain of the human glucocorticoid receptor that are important for transcriptional transactivation by the receptor. Purified tau 1 specifically inhibited transcription from a basal promoter derived from the CYC1 gene and from the adenovirus 2 major late core promoter in a concentration-dependent manner. This inhibition or squelching was correlated with the transactivation activity of tau 1. Recombinant yeast TATA-binding protein (yTFIID), although active in vitro, did not specifically reverse the inhibitory effect of tau 1. In addition, no specific interaction between tau 1 and yTFIID could be shown in vitro by affinity chromatography. Taken together, these results indicate that the tau 1 transactivation domain of the human glucocorticoid receptor interacts directly with the general transcriptional apparatus through some target protein(s) that is distinct from the TATA-binding factor. Furthermore, this assay can be used to identify interacting factors, since after phosphocellulose chromatography of a whole-cell yeast extract, a fraction that contained an activity which selectively counteracted the squelching effect of tau 1 was found.


2008 ◽  
Vol 86 (4) ◽  
pp. 298-304 ◽  
Author(s):  
Erwin Buncel ◽  
Sam-Rok Keum ◽  
Srinivasan Rajagopal ◽  
Eric Kiepek ◽  
Robin A Cox

Extension of our studies of the generic Wallach rearrangement (of azoxybenzene to 4-hydroxyazobenzene) to the heteroaromatic series (azoxypyridines and axoxypyridine N-oxides) has revealed some dramatic reactivity differences, particularly for the α and β compounds. We have studied the 3-isomers and the 4-isomers in each series, each with α and β forms, eight compounds in all, in the 100 wt% sulfuric acid region of acidity. In those cases in which a product could be observed, the α and β isomers both give the same one, the corresponding 4′-hydroxyazo compounds. All the compounds react much more slowly than does azoxybenzene itself, presumably because of the extra positive charge present in the substrates, but the β isomers have half-lives of seconds and the α isomers half-lives of hundreds of hours in the 100 wt% H2SO4 acidity region. The α compounds have measurable pKBH+ values, but the β compounds do not, exhibiting only a medium effect in the acidity region in which the α compounds protonate. This means that for the β compounds, the protonated intermediates must be much less stable and the postulated reaction intermediates must be much more stable than for the α compounds. To clarify this, we have obtained Mulliken charge distributions for the various species concerned, calculating the charge carried by each half of the molecule, larger charge separations being taken to indicate lesser stability. As far as we can establish, this is the first time that this technique has been used to indicate the stabilities of carbocationic species.Key words: azoxypyridines, azoxypyridine N-oxides, Wallach rearrangement, excess acidity, basicities, theoretical calculations, charge distributions, reactivities.


Clay Minerals ◽  
1986 ◽  
Vol 21 (2) ◽  
pp. 125-131 ◽  
Author(s):  
S. Komarneni ◽  
R. Roy

AbstractK-depleted phlogopite mica was used as a topotactic precursor and treated with alkali (Li+, K+, , Rb+, Cs+), alkaline-earth (Mg2+, Ca2+, Sr2+, Ba2+) and trivalent (Al3+) cations under hydrothermal conditions of 200°C and 30 MPa pressure. K-, NH4-, Rb- and Cs-aluminosilicate micas were synthesised at 200°C in one day. The synthesis of Cs-aluminosilicate mica, with potential applications in the management of nuclear wastes, has been achieved for the first time by this approach. Ion exchange by Li+, Na+ and alkaline-earth cations under hydrothermal conditions did not produce anhydrous mica phases but resulted in hydrous phases with one or two layers of water molecules between the clay layers. The formation of hydrous phases may be attributed to the high hydration energy of the above cations compared to K+, , RB+ and Cs+. Ion exchange with Al3+ produced a chlorite-like phase because of the hydrolysis of Al3+ under these hydrothermal conditions. These studies are of relevance in the immobilization of wastes where hazardous ions can be fixed in highly stable insoluble phases like mica or chlorite.


Synlett ◽  
2017 ◽  
Vol 29 (10) ◽  
pp. 1314-1318 ◽  
Author(s):  
Charles Diesendruck ◽  
Sinai Aharonovich ◽  
Nansi Gjineci ◽  
Dario Dekel

Tetraaryl ammonium salts are a synthetic challenge, since there is no general method for the arylation of triaryl amines. Contrary to other quaternary ammonium salts, tetraaryl ammonium salts should be very chemically stable. The ipso carbons are not very electrophilic, since the positive charge is distributed throughout the pi systems and they have no acidic β hydrogens. Here we demonstrate a simple approach to N,N-diphenyl carbazolium salts using only three synthetic steps, allowing for an easy production of these salts in large amounts and in a relatively short time. In addition, we study the Cu(I) catalyzed multi-arylation of 2,2’-diaminobiphenyl, focusing on the regioselectivity of each step. Finally, we characterize, for the first time, the solid state structure of a tetraaryl ammonium salt.


Sign in / Sign up

Export Citation Format

Share Document