scholarly journals Hsa_circ_0076931 suppresses malignant biological properties, downregulates miR-6760-3p through direct binding, and upregulates CCBE1 in glioma

2021 ◽  
Author(s):  
Yanbin Ke ◽  
Shixing Su ◽  
Chuanzhi Duan ◽  
Yezhong Wang ◽  
Guobin Cao ◽  
...  

The function of circular RNAs (circRNAs) in gliomas is as yet unknown. This study explored role of hsa_circ_0076931 in glioma. circRNA expression profiles were identified via RNA-seq followed by qRT-PCR validation in three pairs of glioma and normal brain tissues (NBT). The function of hsa_circ_0076931 was investigated in vitro using cell lines as well as invivo using a xenograft tumor. Hsa_circ_0076931 was upregulated by overexpression and an mRNA profile compared with wildtype was identified by RNA-seq. The relationship between miR-6760-3p and hsa_circ_0076931 or CCBE1 was confirmed via luciferase reporter or AGO2-RIP assays. A total of 507 circRNAs were identified in glioma tissues that were differentially expressed compared with that in NBT, and the sequencing data were deposited in BioProject (ID: PRJNA746438). Hsa_circ_0007694 and hsa_circ_0008016 were memorably increased whereas hsa_circ_0076931 and hsa_circ_0076948 decreased in glioma compared with those in NBT. Additionally, hsa_circ_0076931 expression was negatively correlated with histological grade. Overexpression of hsa_circ_0076931 inhibited proliferation, migration, and invasion while promoting apoptosis of glioma cells. A total of 4,383 and 537 aberrantly expressed genes were identified between the hsa_circ_0076931-overexpressed and control groups in H4 and U118-MG cells, respectively; the sequencing data were deposited in BioProject (ID: PRJNA746438). These differentially expressed genes were mainly enriched in cancer-related pathways. In addition, elevated hsa_circ_0076931 levels induced the expression of CCBE1 while suppressing miR-6760-3p expression. miR-6760-3p can bind to hsa_circ_0076931. The experimental evidence supports using hsa_circ_0076931 as a marker for glioma and to help prevent malignant progression. The mechanism might be relevant to miR-6760-3p and CCBE1.

2021 ◽  
Vol 30 ◽  
pp. 096368972097539
Author(s):  
Jian Li ◽  
Yongjing Yang ◽  
Dequan Xu ◽  
Ling Cao

Gastric cancer (GC) is a big threat to human life and health. Circular RNAs (circRNAs), a subclass of noncoding RNAs, were reported to play a critical role in GC progression. Here, we investigated the role of a novel circRNA named hsa_circ_0023409 in GC and its mechanism. Hsa_circ_0023409 expression in GC and adjacent tissues was examined by quantitative real-time polymerase chain reaction and in situ hybridization. The functions of hsa_circ_0023409 in GC cells were assessed both in vitro and in vivo. Immunofluorescence staining was performed for the localization of hsa_circ_0023409 and miR-542-3p in cells. The interaction between hsa_circ_0023409 and miR-542-3p, and miR-542-3p and insulin receptor substrate 4 (IRS4) was detected by dual-luciferase reporter assay. The effect of hsa_circ_0023409, miR-542-3p, and IRS4 on IRS4/phosphatidylinositol 3-kinase (PI3K)/AKT pathway was detected by western blot. The results showed that hsa_circ_0023409 was mainly located in cytoplasm and highly expressed in GC tissues and cells. Moreover, hsa_circ_0023409 showed positive correlation with tumor size, histological grade, and tumor–node–metastasis staging of GC patients. Functional studies showed that hsa_circ_0023409 promoted cell viability, proliferation, migration, and invasion and suppressed apoptosis in GC. Mechanism studies demonstrated that hsa_circ_0023409 upregulated IRS4 via sponging miR-542-3p in GC cells. Furthermore, IRS4 overexpression activated the PI3K/AKT pathway and reversed the inhibitory effect of hsa_circ_0023409 knockdown on the PI3K/AKT pathway. Taken together, we prove that hsa_circ_0023409 activates IRS4/PI3K/AKT pathway by acting as a sponge for miR-542-3p, thus promoting GC progression, indicating that hsa_circ_0023409 may serve as a potential target for treatment of GC and prognosis of GC patients.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ming-Wang Zhang ◽  
Zhi-Hong Zhu ◽  
Zhi-Kuan Xia ◽  
Xin Yang ◽  
Wan-Ting Luo ◽  
...  

Abstract Background Invasive Trichosporon asahii (T. asahii) infection frequently occurs with a high mortality in immunodeficient hosts, but the pathogenesis of T. asahii infection remains elusive. Circular RNAs (circRNAs) are a type of endogenous noncoding RNA that participate in various disease processes. However, the mechanism of circRNAs in T. asahii infection remains completely unknown. Methods RNA sequencing (RNA-seq) was performed to analyze the expression profiles of circRNAs, microRNAs (miRNAs), and mRNAs in THP-1 cells infected with T. asahii or uninfected samples. Some of the RNA-seq results were verified by RT-qPCR. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were used to analyze the differentially expressed mRNAs. A circRNA-miRNA-mRNA network was constructed and verified by dual-luciferase reporter assay and overexpression experiments. Results A total of 46 circRNAs, 412 mRNAs and 47 miRNAs were differentially expressed at 12 h after T. asahii infection. GO and KEGG analyses showed that the differentially expressed mRNAs were primarily linked to the leukocyte migration involved in the inflammatory response, the Toll-like receptor signaling pathway, and the TNF signaling pathway. A competing endogenous RNA (ceRNA) network was constructed with 5 differentially expressed circRNAs, 5 differentially expressed miRNAs and 42 differentially expressed mRNAs. Among them, hsa_circ_0065336 was found to indirectly regulate PTPN11 expression by sponging miR-505-3p. Conclusions These data revealed a comprehensive circRNA-associated ceRNA network during T. asahii infection, thus providing new insights into the pathogenesis of the T. asahii-host interactions.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xu Wang ◽  
Yaozu Zhu

Abstract Background Multiple circular RNAs (circRNAs) have been recently described as crucial oncogenic factors or tumor suppressors. This study aimed to investigate the role of circ_0000020 in glioma progression. Methods Circ_0000020 and miR-142-5p expressions in glioma samples were assessed through qRT-PCR, and then the association between pathological indexes and circ_0000020 expressions was analyzed. Functional experiment was performed with human glioma cell lines U251 and U87. Gain-of-function and loss-of-function models were established. CCK-8 assay was used to detect glioma cell proliferation. Transwell assay was used to examine glioma cell migration and invasion. The regulatory relationships among circ_0000020, miR-142-5p and phosphatidylinositol 3-kinase C (PIK3CA) were investigated by bioinformatics analysis, luciferase reporter assay, qRT-PCR and Western blot. In vivo tumorigenesis assay was performed with nude mice to further validate the demonstrations of in vitro experiments. Results Circ_0000020 expression in glioma samples was remarkably increased compared with that in normal brain tissues and its high expression was associated with unfavorable pathological indexes. Circ_0000020 overexpression remarkably accelerated proliferation, migration and invasion of glioma cells. Accordingly, circ_0000020 knockdown suppressed the malignant phenotypes of glioma cells. Circ_0000020 overexpression significantly reduced miR-142-5p expression by sponging it, and circ_0000020 could enhance the expression of PIK3CA, which was a target gene of miR-142-5p. Conclusions Circ_0000020 promotes glioma progression via miR-142-5p/PIK3CA axis.


Author(s):  
Chenyu Ding ◽  
Xuehan Yi ◽  
Xiangrong Chen ◽  
Zanyi Wu ◽  
Honghai You ◽  
...  

Abstract Background Temozolomide (TMZ) resistance limits its application in glioma. Exosome can carry circular RNAs (circRNAs) to regulate drug resistance via sponging microRNAs (miRNAs). miRNAs can control mRNA expression by regulate the interaction with 3’UTR and methylation. Nanog homeobox (NANOG) is an important biomarker for TMZ resistance. Hitherto, it is unknown about the role of exosomal hsa_circ_0072083 (circ_0072083) in TMZ resistance in glioma, and whether it is associated with NANOG via regulating miRNA sponge and methylation. Methods TMZ-resistant (n = 36) and sensitive (n = 33) patients were recruited. The sensitive cells and constructed resistant cells were cultured and exposed to TMZ. circ_0072083, miR-1252-5p, AlkB homolog H5 (ALKBH5) and NANOG levels were examined via quantitative reverse transcription polymerase chain reaction and western blot. The half maximal inhibitory concentration (IC50) of TMZ, cell proliferation, apoptosis, migration and invasion were analyzed via Cell Counting Kit-8, colony formation, flow cytometry, wound healing and transwell assays. The in vivo function was assessed using xenograft model. The N6-methyladenosine (m6A) level was analyzed via methylated RNA immunoprecipitation (MeRIP). Target relationship was investigated via dual-luciferase reporter assay and RNA immunoprecipitation. Warburg effect was investigated via lactate production, glucose uptake and key enzymes expression. Exosome was isolated and confirmed via transmission electron microscopy and specific protein expression. Results circ_0072083 expression was increased in TMZ-resistant glioma tissues and cells. circ_0072083 knockdown restrained the resistance of resistant cells via decreasing IC50 of TMZ, proliferation, migration, invasion and xenograft tumor growth and increasing apoptosis. circ_0072083 silence reduced NANOG expression via blocking ALKBH5-mediated demethylation. circ_0072083 could regulate NANOG and ALKBH5 via targeting miR-1252-5p to control TMZ resistance. Warburg effect promoted the release of exosomal circ_0072083 in resistant cells. Exosomal circ_0072083 from resistant cells increased the resistance of sensitive cells to TMZ in vitro and xenograft model. Exosomal circ_0072083 level was enhanced in resistant patients, and it had a diagnostic value and indicated a lower overall survival in glioma. Conclusion Exosomal circ_0072083 promoted TMZ resistance via increasing NANOG via regulating miR-1252-5p-mediated degradation and demethylation in glioma.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Peng Li Zhou ◽  
Zhengyang Wu ◽  
Wenguang Zhang ◽  
Miao Xu ◽  
Jianzhuang Ren ◽  
...  

AbstractGrowing evidence has indicated that circular RNAs (circRNAs) play a pivotal role as functional RNAs in diverse cancers. However, most circRNAs involved in esophageal squamous cell carcinoma (ESCC) remain undefined, and the underlying molecular mechanisms mediated by circRNAs are largely unclear. Here, we screened human circRNA expression profiles in ESCC tissues and found significantly increased expression of hsa_circ_0000277 (termed circPDE3B) in ESCC tissues and cell lines compared to the normal controls. Moreover, higher circPDE3B expression in patients with ESCC was correlated with advanced tumor-node-metastasis (TNM) stage and dismal prognosis. Functional experiments demonstrated that circPDE3B promoted the tumorigenesis and metastasis of ESCC cells in vitro and in vivo. Mechanistically, bioinformatics analysis, a dual-luciferase reporter assay, and anti-AGO2 RNA immunoprecipitation showed that circPDE3B could act as a competing endogenous RNA (ceRNA) by harboring miR-4766-5p to eliminate the inhibitory effect on the target gene laminin α1 (LAMA1). In addition, LAMA1 was significantly upregulated in ESCC tissues and was positively associated with the aggressive oncogenic phenotype. More importantly, rescue experiments revealed that the oncogenic role of circPDE3B in ESCC is partly dependent on the miR-4766-5p/LAMA1 axis. Furthermore, bioinformatics analysis combined with validation experiments showed that epithelial-mesenchymal transition (EMT) activation was involved in the oncogenic functions of the circPDE3B–miR-4766-5p/LAMA1 axis in ESCC. Taken together, we demonstrate for the first time that the circPDE3B/miR-4766-5p/LAMA1 axis functions as an oncogenic factor in promoting ESCC cell proliferation, migration, and invasion by inducing EMT, implying its potential prognostic and therapeutic significance in ESCC.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Jingpeng Wang ◽  
Shuyuan Li ◽  
Gaofeng Zhang ◽  
Huihua Han

Abstract Background Sevoflurane (Sev), a commonly used volatile anesthetic, has been reported to inhibit the process of colorectal cancer (CRC). Circular RNAs (circRNAs) are revealed to participate in the pathogenesis of CRC. This study aims to reveal the mechanism of hsa_circ_0000231 in Sev-mediated CRC progression. Methods The expression of hsa_circ_0000231 and microRNA-622 (miR-622) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Protein level was determined by western blot analysis. Cell proliferation was investigated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), cell colony formation and DNA content quantitation assays. Cell apoptosis was detected by Annexin V-fluorescein isothiocyanate and propidium iodide double staining and caspase 3 activity assays. Cell migration and invasion were investigated by wound-healing and transwell invasion assays, respectively. The putative relationship between hsa_circ_0000231 and miR-622 was predicted by circular RNA Interactome online database, and identified by dual-luciferase reporter and RNA immunoprecipitation assays. The impacts of hsa_circ_0000231 on Sev-mediated tumor formation in vivo were presented by in vivo assay. Results Hsa_circ_0000231 expression was upregulated, while miR-622 was downregulated in CRC tissues and cells compared with control groups. Sev treatment decreased hsa_circ_0000231 expression, but increased miR-622 expression in CRC cells. Sev treatment suppressed cell proliferation, migration and invasion, and induced cell apoptosis. Hsa_circ_0000231 overexpression restored Sev-mediated CRC progression in vitro. Additionally, hsa_circ_0000231 acted as a sponge of miR-622, and miR-622 inhibitors reversed the impacts of hsa_circ_0000231 silencing on CRC process. Furthermore, Sev treatment inhibited tumor growth by regulating hsa_circ_0000231 in vivo. Conclusion Hsa_circ_0000231 attenuated Sev-aroused repression impacts on CRC development by sponging miR-622. This findings may provide an appropriate anesthetic protocol for CRC sufferers undergoing surgery.


2021 ◽  
Vol 11 (8) ◽  
pp. 1466-1476
Author(s):  
Xuli Wang ◽  
Aiping Wang

Circular RNAs (circRNAs) have been reported to participate in the molecular mechanism of human cancers. This study investigates the role of circRNA hsa_circ_0000515 in gastric cancer (GC) cells and the underlying mechanism associated with microRNA-615-5p (miR-615-5p). qRT-PCR analysis showed the upregulation of hsa_circ_0000515 and downregulation of miR-615-5p in GC cell lines. Loss-of-function experiments indicated that suppression of hsa_circ_0000515 inhibited cell proliferation, migration, and invasion. Dual-luciferase reporter assay highlighted that hsa_circ_0000515 was able to act as a ceRNA of miR-615-5p. Furthermore, hsa_circ_0000515 could interact with splicing factors and bind miR-615-5p to regulate progression of GC cells. Deficiency of miR-615-5p reverses the inhibitory roles of si-hsa_circ_0000515 on the proliferation, migration, and invasion of GC cells. The findings highlighted the promising uses of hsa_circ_0000515 as a likely novel target for gastric cancer treatment.


2018 ◽  
Vol 51 (3) ◽  
pp. 1389-1398 ◽  
Author(s):  
Lili Zhu ◽  
Tingting Ren ◽  
Zixin Zhu ◽  
Mingliang  Cheng ◽  
Qiuju Mou ◽  
...  

Background/Aims: Hepatic stellate cells (HSCs) are the primary cell type responsible for liver fibrosis. Our study proved that thymosin beta 4 (Tβ4) has anti-fibrogenic effects in HSCs through PI3K/AKT pathway. However, the underlying mechanisms are not fully elucidated. Circular RNAs (circRNAs) play important roles in fine-tuning gene expression and are often deregulated in cancers. However, the expression profile and clinical significance of in liver fibrosis is still unknown. Therefore, we hypothesize that Tβ4 influences circRNAs in liver fibrosis. Methods: Circular RNA microarray was conducted to identify Tβ4-related circRNAs. Pathway analysis and miRNA response elements analysis was conducted to predict the potential roles of differentially expressed circRNAs in liver fibrosis. CCK8 assays and flow cytometric assays were conducted to clarify the role of circRNA in liver fibrosis. Bioinformatics analysis and in vitro experiments were conducted to clarify the mechanism of circRNA-mediated gene regulation in liver fibrosis. Results: A total of 644 differentially expressed circRNAs were identified between the Tβ4-depleted LX-2 cells and the control LX2 cells. The expression of circRNA-0067835 was significantly increased in the Tβ4-depleted LX-2 cells compared with control. Knockdown of circRNA-0067835 observably decreased LX-2 cell proliferation by causing G1 arrest and promoting apoptosis. Bioinformatics online programs predicted that circRNA-0067835 acted as miR-155 sponge to regulate FOXO3a expression, which was validated using luciferase reporter assay. Conclusion: Our experiments showed that circRNA-0067835 regulated liver fibrosis progression by acting as a sponge of miR-155 to promote FOXO3a expression, indicating that circRNA-0067835 may serve as a potential therapeutic target for patients with liver fibrosis.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Fei Pan ◽  
Dongqing Zhang ◽  
Na Li ◽  
Mei Liu

circRNAs (circular RNAs) are a family of noncoding RNAs and have diverse physiological and pathological functions. However, the functions and mechanisms of circRNAs in the development and progression of colorectal cancer (CRC) remain largely unknown. Here, we aimed to explore the functions and roles of circFAT1(e2) in CRC. qRT-PCR revealed that circFAT1(e2) in CRC tumor tissues was upregulated compared with that in adjacent normal tissues and was also upregulated in CRC cell lines. Small interfering RNAs (siRNAs) against circFAT1(e2) were used to decrease the expression of circFAT1(e2) in HCT116 and RKO cells in vitro. The roles of circFAT1(e2) in CRC cell metastasis and proliferation were then determined by transwell and CCK-8 assays. The results showed that circFAT1(e2) silencing markedly suppressed CRC growth. Moreover, we identified circFAT1(e2) as a promoter of CRC metastasis. Knockdown of circFAT1(e2) evidently reduced HCT116 and RKO cell migration and invasion. Furthermore, the regulatory relationship between circFAT1(e2) and its target miRNAs was verified by a luciferase reporter assay. We demonstrated that circFAT1(e2) could sponge miR-30e-5p, which regulated the expression level of integrin α6 (ITGA6), the downstream target gene of miR-30e-5p. Rescue assays demonstrated that knockdown of miR-30e-5p enhanced CRC proliferation and migration via ITGA6. Taken together, our results reveal the novel oncogenic roles of circFAT1(e2) in CRC through the miR-30e-5p/ITGA6 axis.


2020 ◽  
Author(s):  
Fangwei Li ◽  
Hong Wang ◽  
Hongyan Tao ◽  
Fanqi Wu ◽  
Dan Wang ◽  
...  

Abstract Background: Recent studies have found a regulatory role of circular RNAs (circRNAs) in the pathogenesis of idiopathic pulmonary fibrosis (IPF). However, the function and underlying molecular mechanism of circRNAs involved in IPF are uncertain and incomplete. This study aimed to further provide some critical information for the circRNA function in IPF using bioinformatic analysis. Methods: We searched in the NCBI (National Center for Biotechnology Information) Gene Expression Omnibus (GEO) database to find the circRNA expression profiles of human IPF. The microarray data GSE102660 was obtained and differentially expressed circRNAs were identified through R software. Results: 6 significantly up-regulated and 13 significantly down-regulated circRNAs were identified involved in the pathogenesis of IPF. The binding sites of miRNAs for each differentially expressed circRNA were also predicted and circRNA-miRNA-mRNA networks were constructed for the most up-regulated hsa_circ_0004099 and down-regulated hsa_circ_0029633. In addition, GO and KEGG enrichment analysis revealed the molecular function and enriched pathways of the target genes of circRNAs in IPF.Conclusion: These findings suggest that candidate circRNAs might serve an important role in the pathogenesis of IPF. Therefore, these circRNAs might be potential biomarkers for diagnosis and promising targets for treatment of IPF, which still need further verification in vivo and in vitro.


Sign in / Sign up

Export Citation Format

Share Document