scholarly journals Extracellular RNA in kidney disease: moving slowly but surely from bench to bedside

2020 ◽  
Vol 134 (21) ◽  
pp. 2893-2895
Author(s):  
Robert W. Hunter ◽  
Neeraj Dhaun

Abstract We have known for just over a decade that functional RNA is shuttled between cells (Nat. Cell Biol. (2007) 9, 654–659). In that short time, there have been countless reports of extracellular RNA (exRNA) and extracellular vesicles (EVs) participating in diverse biological processes in development (Dev. Cell (2017) 40, 95–103), homoeostasis (Nature (2017) 542, 450–455) and disease (Nature (2017) 546, 498–503). Unsurprisingly – as these disciplines are still in their infancies – most of this work is still in the ‘discovery biology’ phase. However, exRNA and EVs show promise as disease biomarkers and could be harnessed in novel therapies.

Hypertension ◽  
2021 ◽  
Vol 77 (1) ◽  
pp. 28-38
Author(s):  
Olga Martinez-Arroyo ◽  
Ana Ortega ◽  
Josep Redon ◽  
Raquel Cortes

Hypertension-mediated organ damage frequently includes renal function decline in which several mechanisms are involved. The present review outlines the state of the art on extracellular vesicles in hypertension and hypertension-related renal damage. Emerging evidence indicates that extracellular vesicles, small vesicles secreted by most cell types and body fluids, are involved in cell-to-cell communication and are key players mediating biological processes such as inflammation, endothelial dysfunction or fibrosis, mechanisms present the onset and progression of hypertension-associated kidney disease. We address the potential use of extracellular vesicles as markers of hypertension-mediated kidney damage severity and their application as therapeutic agents in hypertension-associated renal damage. The capacity of exosomes to deliver a wide variety of cargos to the target cell efficiently makes them a potential drug delivery system for treatment of renal diseases.


2019 ◽  
Author(s):  
Javier Mariscal ◽  
Tatyana Vagner ◽  
Minhyung Kim ◽  
Bo Zhou ◽  
Andrew Chin ◽  
...  

AbstractExtracellular vesicles (EVs) are membrane-enclosed particles that play an important role in cancer progression and have emerged as a promising source of circulating biomarkers. Protein S-acylation, also known as palmitoylation, has been proposed as a post-translational mechanism that modulates the dynamics of EV biogenesis and protein cargo sorting. However, technical challenges have limited large-scale profiling of the whole palmitoyl-proteins of EVs. We successfully employed a novel approach that combines low-background acyl-biotinyl exchange (LB-ABE) with label-free proteomics to analyze the palmitoyl proteome of large EVs (L-EVs) and small EVs (S-EVs) from prostate cancer cells. Here we report the first palmitoyl-protein signature of EVs, and demonstrate that L- and S-EVs harbor proteins associated with distinct biological processes and subcellular origin. We identified STEAP1, STEAP2, and ABBC4 as prostate cancer-specific palmitoyl proteins enriched in both EV populations in comparison with the originating cell lines. Importantly, the presence of the above proteins in EVs was significantly reduced upon inhibition of palmitoylation in the producing cells. These results suggest that palmitoylation may be involved in the differential sorting of proteins to distinct EV populations and allow for better detection of disease biomarkers.


Author(s):  
Qin Zhang ◽  
Dennis K. Jeppesen ◽  
James N. Higginbotham ◽  
Ramona Graves-Deal ◽  
Vincent Q. Trinh ◽  
...  

AbstractExtracellular vesicles and exomere nanoparticles are under intense investigation as sources of clinically relevant cargo. Here we report the discovery of a distinct extracellular nanoparticle, termed supermere. Supermeres are morphologically distinct from exomeres and display a markedly greater uptake in vivo compared with small extracellular vesicles and exomeres. The protein and RNA composition of supermeres differs from small extracellular vesicles and exomeres. Supermeres are highly enriched with cargo involved in multiple cancers (glycolytic enzymes, TGFBI, miR-1246, MET, GPC1 and AGO2), Alzheimer’s disease (APP) and cardiovascular disease (ACE2, ACE and PCSK9). The majority of extracellular RNA is associated with supermeres rather than small extracellular vesicles and exomeres. Cancer-derived supermeres increase lactate secretion, transfer cetuximab resistance and decrease hepatic lipids and glycogen in vivo. This study identifies a distinct functional nanoparticle replete with potential circulating biomarkers and therapeutic targets for a host of human diseases.


2018 ◽  
Author(s):  
Yingqian Wang ◽  
Xiaoxia Hu ◽  
Lingling Zhang ◽  
Chunli Zhu ◽  
Jie Wang ◽  
...  

Extracellular vesicles (EVs) are involved in the regulation of cell physiological activity and the reconstruction of extracellular environment. Matrix vesicles (MVs) are a type of EVs, and they participate in the regulation of cell mineralization. Herein, bioinspired MVs embedded with black phosphorus are functionalized with cell-specific aptamer (denoted as Apt-bioinspired MVs) for stimulating biomineralization. The aptamer can direct bioinspired MVs to targeted cells, and the increasing concentration of inorganic phosphate originated from the black phosphorus can facilitate cell biomineralization. The photothermal effect of the Apt-bioinspired MVs also positively affects mineralization. In addition, the Apt-bioinspired MVs display outstanding bone regeneration performance. Considering the excellent behavior of the Apt-bioinspired MVs for promoting biomineralization, our strategy provides a way of designing bionic tools for studying the mechanisms of biological processes and advancing the development of medical engineering.<br>


2021 ◽  
Author(s):  
Shuwei Wang ◽  
Jiajia Wang ◽  
Tuoyu Ju ◽  
Kaige Qu ◽  
Fan Yang ◽  
...  

Extracellular Vesicles (EVs) secreted by cancer cells have a key role in the cancer microenvironment and progression. Previous studies have mainly focused on molecular functions, cellular components and biological processes...


2021 ◽  
Vol 10 (10) ◽  
pp. 2046
Author(s):  
Goren Saenz-Pipaon ◽  
Saioa Echeverria ◽  
Josune Orbe ◽  
Carmen Roncal

Diabetic kidney disease (DKD) is the leading cause of end stage renal disease (ESRD) in developed countries, affecting more than 40% of diabetes mellitus (DM) patients. DKD pathogenesis is multifactorial leading to a clinical presentation characterized by proteinuria, hypertension, and a gradual reduction in kidney function, accompanied by a high incidence of cardiovascular (CV) events and mortality. Unlike other diabetes-related complications, DKD prevalence has failed to decline over the past 30 years, becoming a growing socioeconomic burden. Treatments controlling glucose levels, albuminuria and blood pressure may slow down DKD evolution and reduce CV events, but are not able to completely halt its progression. Moreover, one in five patients with diabetes develop DKD in the absence of albuminuria, and in others nephropathy goes unrecognized at the time of diagnosis, urging to find novel noninvasive and more precise early diagnosis and prognosis biomarkers and therapeutic targets for these patient subgroups. Extracellular vesicles (EVs), especially urinary (u)EVs, have emerged as an alternative for this purpose, as changes in their numbers and composition have been reported in clinical conditions involving DM and renal diseases. In this review, we will summarize the current knowledge on the role of (u)EVs in DKD.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 902
Author(s):  
Eva Costanzi ◽  
Carolina Simioni ◽  
Gabriele Varano ◽  
Cinzia Brenna ◽  
Ilaria Conti ◽  
...  

Extracellular vesicles (EVs) have attracted interest as mediators of intercellular communication following the discovery that EVs contain RNA molecules, including non-coding RNA (ncRNA). Growing evidence for the enrichment of peculiar RNA species in specific EV subtypes has been demonstrated. ncRNAs, transferred from donor cells to recipient cells, confer to EVs the feature to regulate the expression of genes involved in differentiation, proliferation, apoptosis, and other biological processes. These multiple actions require accuracy in the isolation of RNA content from EVs and the methodologies used play a relevant role. In liver, EVs play a crucial role in regulating cell–cell communications and several pathophysiological events in the heterogeneous liver class of cells via horizontal transfer of their cargo. This review aims to discuss the rising role of EVs and their ncRNAs content in regulating specific aspects of hepatocellular carcinoma development, including tumorigenesis, angiogenesis, and tumor metastasis. We analyze the progress in EV-ncRNAs’ potential clinical applications as important diagnostic and prognostic biomarkers for liver conditions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hao Ding ◽  
Linda Xiaoyan Li ◽  
Peter C. Harris ◽  
Junwei Yang ◽  
Xiaogang Li

AbstractAutosomal dominant polycystic kidney disease (ADPKD) is caused by germline mutations of PKD1 or PKD2 on one allele and a somatic mutation inactivating the remaining normal allele. However, if and how null ADPKD gene renal epithelial cells affect the biology and function of neighboring cells, including heterozygous renal epithelial cells, fibroblasts and macrophages during cyst initiation and expansion remains unknown. Here we address this question with a “cystic extracellular vesicles/exosomes theory”. We show that cystic cell derived extracellular vesicles and urinary exosomes derived from ADPKD patients promote cyst growth in Pkd1 mutant kidneys and in 3D cultures. This is achieved by: 1) downregulation of Pkd1 gene expression and upregulation of specific miRNAs, resulting in the activation of PKD associated signaling pathways in recipient renal epithelial cells and tissues; 2) the activation of fibroblasts; and 3) the induction of cytokine expression and the recruitment of macrophages to increase renal inflammation in cystic kidneys. Inhibition of exosome biogenesis/release with GW4869 significantly delays cyst growth in aggressive and milder ADPKD mouse models, suggesting that targeting exosome secretion has therapeutic potential for ADPKD.


Author(s):  
Takayoshi Yamauchi ◽  
Toshiro Moroishi

Abstract Extracellular vesicles (EVs) are small particles that are naturally released from various types of cells. EVs contain a wide variety of cellular components, such as proteins, nucleic acids, lipids and metabolites, which facilitate intercellular communication in diverse biological processes. In the tumour microenvironment, EVs have been shown to play important roles in tumour progression, including immune system–tumour interactions. Although previous studies have convincingly demonstrated the immunosuppressive functions of tumour-derived EVs, some studies have suggested that tumour-derived EVs can also stimulate host immunity, especially in therapeutic conditions. Recent studies have revealed the heterogeneous nature of EVs with different structural and biological characteristics that may account for the divergent functions of EVs in tumour immunity. In this review article, we provide a brief summary of our current understanding of tumour-derived EVs in immune activation and inhibition. We also highlight the emerging utility of EVs in the diagnosis and treatment of cancers and discuss the potential clinical applications of tumour-derived EVs.


Sign in / Sign up

Export Citation Format

Share Document