scholarly journals Possibility of using RIT technology in the ground conditions of Vietnam

2020 ◽  
Vol 177 ◽  
pp. 02005
Author(s):  
Yury Kharin

The article compares engineering and geological conditions in the coastal areas of Vietnam and Tunisia. A sufficiently high similarity of soil structure and their physical and mechanical properties was noted. Both in Vietnam and in Tunisia, foundations for responsible buildings and structures are arranged on bored piles of the same length of 40-60 meters and a diameter of 600 to 1600 mm. The article provides examples of using super-piles of small-size RIT using recharge impulse technology in conditions of weak water-saturated coastal soils of Tunisia. The high efficiency and cost-effectiveness of the new recharge impulse technology were noted. The article presents photographic materials of the test stand for conducting field tests of piles, presents and analyzes the results of testing piles with vertical static load. The low precipitation of the tested piles and their high load-bearing capacity prove the promise of using super-piles of RIT in the conditions of weak soils of Tunisia and, consequently, in the coastal areas of Vietnam.

2018 ◽  
Vol 22 (1) ◽  
pp. 71-77
Author(s):  
E. A. Kudryashov ◽  
I. М. Smirnov ◽  
D. V. Grishin

The complexity of the technology of machining by cutting complex surfaces of parts heterogeneous in terms of physical and mechanical properties and different machinability, and, in particular, of metals (aluminum) and plastics (polyurethane and polyethylene), which form an assembly component, a section of the container-type countermine system is defined in the paper. The description of technological process operations of machining of a basic detail of an item, the body, is given. Features, the presence of which creates not only difficulties in the implementation of the technological process of manufacturing a base part, but is not permissible in the operation of a defense-purpose item are revealed. The article proposes design and technological solutions for the use of a new cutting tool design, capable to eliminate errors of creep feed drilling, avoid sticking of the material of the protective shell and casing on the active cutting part, exclude damage to the contact body and thereby ensure the specified performance of the item , Field tests of a container-type countermine system with basic parts manufactured using the new tool and technology have shown high efficiency of the decisions taken.


Author(s):  
Van Trong Le ◽  

Modern technical regulations and design principles are limited by soil resistance on the side surface and under the point of bored piles up to 40 m. Meanwhile, the construction of high-rise buildings and underground structures requires the use of deeper bored piles. The author has set the task to determine the soil resistance for deep-bored piles by statistical processing of numerous results of field tests of bored piles and nonlinear extrapolation of soil resistance to a depth of 100 m in the geological conditions of Saint Petersburg.


2021 ◽  
Vol 1 (4) ◽  
pp. 63-70
Author(s):  
YU.E. Kisel' ◽  
◽  
S.P. Simokhin ◽  
S.A. Murachev ◽  
◽  
...  

The technology of bath-free ironing of parts in an electrolyte flow with simultaneous hydrome-chanical activation of the growing surface is proposed. Its advantages over the traditional type of coating are introduced. The structure, some physicomechanical and operational properties of iron coatings were studied depending on the electrolysis regimes and the composition of electrolytes. The possibility of high-speed electrodeposition of iron with a wide range of physical and mechanical properties is shown. There were shown the electrolysis modes, which make it possible to obtain high-quality strong-adhered pure-iron coatings with a wear resistance several times higher than hardened alloy steels and a precipitation growth rate tens of times higher than with traditional iron-ing. A typical technological process of parts ironing was developed. It was tested on the example of restoration of hydraulic valve spools of agricultural machinery. The design of an installation and an electrochemical cell for ironing the valve hydraulic distributors, providing optimal hydrodynamic conditions when applying coatings to worn surfaces, was proposed. Recommendations for the post-electrolysis treatment of restored parts by iron are given. Bench and field tests of hydraulic valves with remanufactured valves were carried out. They confirmed the results of laboratory studies, and showed that no malfunctions were identified during the operation period. Technical and economic calculations have shown the high efficiency of the proposed technology in comparison with tradi-tional ironing. The introduction of the technology in production will reduce the production area and the time spent on restoring parts by increasing the productivity of the iron process and reducing the number of operations, reducing the cost of materials for preparing electrolytes by reducing the op-eration of anodic treatment and washing, and increasing the reliability of the technology by improv-ing its structural scheme.


2019 ◽  
Vol 828 ◽  
pp. 194-201
Author(s):  
Lidia Kondratieva ◽  
Vladimir Konyushkov ◽  
Le Van Trong ◽  
Vladimir Kirillov

The purpose of the study is to establish accuracy of determining the load-bearing capacity of bored piles according to the method specified in Regulations 24.13330.2011 "Pile foundations". Relevance of the topic is determined by the following: the load-bearing capacity of a pile is a fundamental indicator affecting all subsequent activities related to foundation design, and accuracy of analytical solutions for complex engineering and geological conditions is highly questionable. Field tests of bored piles were carried out in engineering and geological conditions of Saint Petersburg with deformation modulus from 10 to 40 MPa at a load in the range from 1,000 to 6,300 kN, at achievement of absolute settlement of 40 mm. Piles with a diameter from 0.15 to 0.88 m and a length from 10 to 47 m were made using various technologies: using casing, using slurry, using a flight auger. Following the results of field tests, diagrams of load-bearing capacity of piles according to the material, depending on geometrical parameters and manufacturing techniques, diagrams of actual and designed load-bearing capacity of piles were plotted. Approximating functions to describe the dependences were obtained. According to the analysis of the results, it is possible to conclude that the load-bearing capacity of the bored pile during field tests is 1.4–1.7 times higher than the load-bearing capacity of the pile designed according to Regulations 24.13330.2011; the average share of the load-bearing capacity along the side surface of the pile was 65% and under the pile toe — 35%.


2018 ◽  
Vol 56 ◽  
pp. 02014
Author(s):  
Maksim Rasskazov ◽  
Marina Potapchuk ◽  
Gennady Kursakin ◽  
Denis Tsoy

The paper presents the results of geomechanical studies on the assessment of the potential rockburst hazard of the rock massif of the South Khingan deposit of manganese ore at the stage of development. Geodynamic zoning has been performed, mining and technical, mining and geological conditions of field development have been studied, and parameters of physical and mechanical properties of enclosing rocks and ores have been determined. Numerical simulation methods have been used to estimate the stress state of a rock massif at various stages of the deposit development. The tendency of the lower part of the South Khingan deposit to rockburst has been established. The complex of effective organizational and technical security measures has been substantiated in the development of this field.


2018 ◽  
Vol 212 ◽  
pp. 01013
Author(s):  
Vadim Balabanov ◽  
Victor Baryshok ◽  
Nikita Epishkin

The sharply continental climate of the Irkutsk region is characterized by wide temperature intervals throughout the year. The repeated cyclicity of freezing and thawing of building materials in the water-saturated state influences the change in technical characteristics and the durability of concrete products and structures. The concrete products’ features in such climatic conditions create the need for the production of concretes with improved indicators of physical and mechanical properties. The effect of modifying additives on the technological characteristics of sulfur concrete is established. The effect of all elements of sulfur concrete on its strength and frost resistance. The composition of sulfuric concrete is obtained, which meets all the requirements and also has high strength and increased frost resistance. Formulations with a certain ratio of structural sulfuric concrete mixtures were developed. As a result of the use of technical sulfur in the composition of concrete products, the problem of utilizing annually accumulating reserves of technical sulfur is partially solved. The strength properties of sulfuric concretes easily compete with high-quality brands of concrete, special types of concretes that have in their composition additives.


2021 ◽  
pp. 46-54
Author(s):  
Muhammad Amin Syam ◽  
Heriyanto Heriyanto ◽  
Hamzah Umar

PT Belayan Internasional Coal is an open-pit system mining company, one of its geotechnical activities is the construction of the slopes. Slope stability analysis used the Bishop Simplified method to obtain the value of the dynamic safety factor (≥ 1,1). Currently, the value of the Safety Factor (FK) is an indicator in determining whether the slope is stable or not. The parameters used in the slope stability analysis are the physical and mechanical properties of the rock, namely weight (ɣ), cohesion value (c), and internal shear angle (∅). From the results of dynamic overall slope calculations, the recommended overall slope is constructed with an individual slope angle of 55°, a bench width of 5 meters, a height of 10 meters, and the number of individual slopes of 8 slopes. This design will produce dimensions of the overall slope with 41° slope angle, 80 meters high, and has a dynamic safety factor value of 1,102 with the water-saturated condition. Thus, the slopes are in stable condition.


2020 ◽  
Vol 12 (3) ◽  
pp. 454-460
Author(s):  
Yuri KLYKOV ◽  
◽  
Marina KHUDOYAN ◽  
Georgy KIBIZOV ◽  
◽  
...  

Introduction. Currently used grinding machines, among which drum mills are the most widely used, have a low efficiency, are bulky, are characterized by low specific productivity, significant consumption of steel for grinding bodies and lining, high noise level, and high energy consumption of the grinding process. The most promising devices of a new type that can effectively perform grinding operations at high technological rates are centrifugal mills. The centrifugal mill developed at SKGMI operates on the principle of self-grinding of pieces and particles of crushed mineral raw materials, when they collide and RUB in a mobile toroidal flow formed when the material moves between a rotating Cup-shaped rotor, a fixed body and the overlying layers of the crushed material. Grinding occurs due to the appearance of a gradient of particle velocities over the working body, due to their impact and, to a greater extent, abrasion. The tests of these mills for grinding various materials have shown high efficiency in operation, but until now, the issues of determining the physical and mechanical properties of the crushed material based on the establishment of the particle opening mechanism remain unresolved. The purpose of the tests. Determination of the physical and mechanical properties of the crushed material in a centrifugal mill based on the establishment of the particle opening mechanism. Test procedure. To solve this problem, a vertical centrifugal mill MC-600 with a rotor diameter of 600 mm was used. Tests of the centrifugal mill were carried out according to the following method. The speed of rotation of the rotor was 4.8 and 8.4 s-1, the height of the material column above the rotor was at the level of 250 and 350 mm; 6 radial ribs were installed in the rotor cavity of the mill. The time of each test was 4 hours. The tests were repeated 3–5 times for each mode of operation of the mill. Quartz was used as a reference material for determining the relative pulverizability coefficient. The research was carried out in the production conditions of the Izhevsk machinebuilding plant during the regeneration of spent molding quartz mixtures. Pieces of a liquid-glass mixture based on quartz sand with strength of 1.3 MPa and 4.25 MPa were used as the crushed material. The crushed material was dispersed according to the standard method for each hour of operation of the mill. Samples were taken in the size class -0.200 + 0.074 mm for their fractional analysis by size. Test result. 1. It was Found that the maximum productivity of a centrifugal mill when grinding pieces of material with a strength of 1.3 MPa was achieved with a loading weight of 90–100 kg, and with a strength of 4.25 MPa – 100–110 kg, which indicates the need to create an increased normal pressure of the layers of crushed material located above the mill rotor. It was found that the maximum productivity of a centrifugal mill when grinding pieces of material with a strength of 1.3 MPa and a rotor rotation frequency of 8.4 s-1 was 13.16 t/h, and when grinding pieces of material with a strength of 4.25 MPa – 10.0 t/h. 2. The Dependence of power consumption on the weight of the mill load and the rotor speed increases when the load weight is more than 100 kg. 3. The Highest fraction content of class -0.4 +0.16 mm is 72.14 %, and the content of class -0.074 mm is 3.9 %, i.e. there is no re-grinding of the source material. 4. The specific productivity of the centrifugal mill for the newly formed calculated size classes -0.074 mm and -0.200 mm was 1.28 t/h and 13.0 t/h, respectively. 5. Microscopic study of anshlifov showed that quartz grains in the crushed material mostly have a rounded shape, on average 90–95 % of the grains. In the initial material, about 90% of quartz joints with a binder, and in the crushed material, the number of joints does not exceed 3–5%. Thus, the degree of expansion of quartz reaches to 0.87. Conclusions. The paper presents the results of studies of a centrifugal mill in the conditions of the Izhevsk machinebuilding plant when grinding quartz-containing products. The physical and mechanical properties of the crushed material that significantly affect the efficiency of grinding are determined. The mechanism of the disclosure particles of quartz, which is primarily the mineral content of many ores and defined particle size obtained by grinding. At the same time, it was found that a large yield of thin classes significantly reduces the efficiency of further technology.


Author(s):  
Ирина Рыбникова ◽  
Irina Rybnikova ◽  
Александр Рыбников ◽  
Aleksandr Rybnikov

One of the methods of improving the bearing capacity of bored piles is giving them a taper. The feature of these (wedge-type) piles is that under load they work "as a thrust" and transfer part of the load due to the normal component to the inclined side surface. Three sizes of tapered bored piles were tested, with the length of 4.5 m, head diameter 0.4; 0.5; 0.6 m and with cone angle 1o and 2,5o. The test results were compared with the test results of cylindrical piles, 4.5 m long, with head diameter 0.4 m and 0.6 m. It has been discovered that with the increasing cone angle, the bearing capacity of piles against the pressing load, especially the specific load capacity for 1 m3 of material, as compared to cylindrical piles, increases significantly. It has been determined that the larger is the diameter of the head of the pile, the higher is the bearing capacity against the horizontal load, and the bearing capacity against the pullout load is equal to the breakout force of a pile from the soil.


Sign in / Sign up

Export Citation Format

Share Document