scholarly journals Vegetable fiber as reinforcing elements for cement based composite in housing applications – a Brazilian experience

2018 ◽  
Vol 149 ◽  
pp. 01007 ◽  
Author(s):  
Viviane da Costa Correia ◽  
Sergio Francisco Santos ◽  
Holmer Savastano

Vegetable fibers are a hierarchical structure material in the macro, micro and nanometric scales that have been used as reinforcement in cementitious materials. In nanoscale, the nanofibrillated cellulose has the advantage of having good mechanical performance and high specific surface, which contributes to improve the adhesion between fiber and matrix. In hybrid reinforcement, with micro and nanofibers, nanofibrillated cellulose forms bonding with the matrix and acts as stress transfer bridges in the nano-cracking with corresponding strengthening of the cementitious composite. Processing has a strong influence on performance of the fiber cement composite. Two fabrication methods were evaluated: (i) slurry dewatering followed by pressing and (ii) extrusion. The extrusion process strongly depends on the rheological characteristics of the fresh cement material but it can better organize the microstructure of the fiber cement due to the partial orientation of the fibers in the extruder direction. Curing process also plays a key role in the performance of the final product. Accelerated carbonation at early age is a promising technology and a strategy to mitigate the durability problems with the composite materials; it decreases porosity, promotes a higher density in the interface guarantying a good fiber–matrix adhesion and a better mechanical behavior. Alternative MgO-SiO2 clinker free binder is also presented as a suitable alternative to cementitious products reinforced with cellulosic pulps. Finally, mechanical behavior of fiber cement under flexural loading is evaluated by modulus of rupture, fracture toughness, the initial crack growth resistance in cement matrix, and fracture energy that is obtained to evaluate the influence of toughening mechanisms promoted by fibers, such as pullout and bridging, on the mechanical performance of the composites. Degradation during the service life is also crucial for the evaluation of the durability of the resulting materials and components in real applications exposed to different environmental conditions as roofing, partitioning or ceiling elements. It can be concluded that more sustainable and high performance components based on engineered natural raw materials for civil construction can bring valuable contributions for the affordable housing in particular to developing region.

Cerâmica ◽  
2017 ◽  
Vol 63 (367) ◽  
pp. 387-394 ◽  
Author(s):  
T. M. Mendes ◽  
W. L. Repette ◽  
P. J. Reis

Abstract The use of nanoparticles in ultra-high strength concretes can result in a positive effect on mechanical performance of these cementitious materials. This study evaluated mixtures containing 10 and 20 wt% of silica fume, for which the optimum nano-silica content was determined, i.e. the quantity of nano-silica that resulted on the higher gain of strength. The physical characterization of raw materials was done in terms of particle size distribution, density and specific surface area. Chemical and mineralogical compositions of materials were obtained through fluorescence and X-ray diffraction. The mechanical performance was evaluated by compressive strength, flexural strength and dynamic elastic modulus measurements. The microstructural analysis of mixtures containing nano-silica was performed by X-ray diffraction, thermogravimetry, mercury intrusion porosimetry and scanning electron microscopy. Obtained results indicate an optimum content of nano-silica of 0.62 wt%, considering compressive and flexural strengths. This performance improvement was directly related to two important microstructural aspects: the packing effect and pozzolanic reaction of nano-silica.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3781
Author(s):  
Tianyu Wang ◽  
Yahong Zhao ◽  
Baosong Ma ◽  
Cong Zeng

The acid–alkaline-inducd corrosive environments inside wastewater concrete pipelines cause concrete structural deterioration and substantial economic losses all over the world. High-performance concrete/mortar (HPC) was designed to have better resistance to corrosive environments, with enhanced service life. However, the durability of HPC in wastewater pipeline environments has rarely been studied. A high-performance mortar mixture (M) reinforced by supplemental materials (including fly ash and silica fume) and polyvinyl alcohol (PVA) fibers, together with a mortar mixture (P) consisting of cement, sand and water with similar mechanical performance, were both designed and exposed to simulated wastewater pipeline environments. The visual appearance, dimensional variation, mass loss, mechanical properties, permeable pore volume, and microstructure of the specimens were measured during the corrosion cycles. More severe deterioration was observed when the alkaline environment was introduced into the corrosion cycles. Test results showed that the M specimens had less permeable pore volume, better dimensional stability, and denser microstructure than the P specimens under acid–alkaline-induced corrosive environments. The mass-loss rates of the M specimens were 66.1–77.2% of the P specimens after 12 corrosion cycles. The compressive strength of the M specimens was 25.5–37.3% higher than the P specimens after 12 cycles under corrosive environments. Hence, the high-performance mortar examined in this study was considered superior to traditional cementitious materials for wastewater pipeline construction and rehabilitation.


2012 ◽  
Vol 174-177 ◽  
pp. 751-756
Author(s):  
Zi Fang Xu ◽  
Ming Xu Zhang ◽  
Jin Hua Li

In order to notably improve the mechanical properties and durability of low-grade cement-based material, superfine silica fume was used to modify the cement-based composite based on special perfomance and effects of nano powder. The mechanical performance and durability were investigated.Then the phase compositions,microstructure and morphologies of as-received cement-based composite were studied by X-ray Diffractometer、TGA-DTA and SEM. The results show that: the best formula of raw materials is 1:1:0.025:0.015, and hydration can be accelerated and increasing of hydration products is observed after modification. In the hardened cement matrix, microstructure is very compacted and C-S-H gel forms densed structure, so the structure defect is notably reduced. This means that both strength and durability of cement-based composite are notably improved by the addition of superfine silica fume.


2018 ◽  
Vol 2 ◽  
pp. 145-154 ◽  
Author(s):  
Viviane Costa Correia ◽  
Sergio Francisco Santos ◽  
Holmer Savastano Jr ◽  
Vanderley Moacyr John

Vegetable fibers produced from agroindustrial resources in the macro, micro and nanometric scales have been used as reinforcement in cementitious materials. The cellulosic pulp, besides being used as the reinforcing element, is also the processing fiber that is responsible for the filtration system in the Hatcheck method. On the other hand, the nanofibrillated cellulose has the advantage of having good mechanical performance and high specific surface, which contributes to improve the adhesion between fiber and matrix. In the hybrid reinforcement, with micro and nanofibers, the cellulose performs bonding elements with the matrix and acts as stress transfer bridges in the micro and nano-cracking network with the corresponding strengthening and toughening of the cementitious composite. Some strategies are studied to mitigate the degradation of the vegetable fibers used in cost-effective and non-conventional fiber cement, as well as to reach a sustainable fiber cement production. As a practical example, the accelerated carbonation curing at early age is a developing technology to increase the durability of composite materials: it decreases porosity, promotes a higher density in the interface generating a good fiber–matrix adhesion and a better mechanical behavior. Thus, the vegetable fibers are potentially applicable to produce high mechanical performance and sustainable cementitious materials for use in the Civil Construction.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4865
Author(s):  
Elżbieta Horszczaruk ◽  
Paweł Łukowski ◽  
Cyprian Seul

In recent years, a nano-modification of the cement composites allowed to develop a number of new materials. The use of even small amount of nano-admixture makes possible not only to improve the physico-mechanical properties of the cement materials, but also to obtain the composite with high usability, optimised for the given application. The basic problem of nano-modification of the cement composites remains the effectiveness of dispersing the nanomaterials inside the cement matrix. This paper deals with the effect of the type and size of the nanoparticles on the tendency to their agglomeration in the cement matrix. The main techniques and methods of dispersing the nanomaterials are presented. It has been demonstrated, on the basis of the results of testing of three nanomodifiers of 0D type (nano-SiO2, nano-Fe3O4 and nano-Pb3O4), how the structure and properties of the nanomaterial affect the behaviour of the particles when dissolving in the mixing water and applying a superplasticiser. The nanoparticles had similar size of about 100 nm but different physico-chemical properties. The methods of dispersing covered the use of high-speed mechanical stirring and ultrasonication. The influence of the method of nano-modifier dispersing on the mechanical performance of the cement composite has been presented on the basis of the results of testing the cement mortars modified with 3% admixture of nano-SiO2.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1593
Author(s):  
Yunyun Tong ◽  
Abdel-Okash Seibou ◽  
Mengya Li ◽  
Abdelhak Kaci ◽  
Jinjian Ye

This paper reports on the utilization of recycled moso bamboo sawdust (BS) as a substitute in a new bio-based cementitious material. In order to improve the incompatibility between biomass and cement matrix, the study firstly investigated the effect of pretreatment methods on the BS. Cold water, hot water, and alkaline solution were used. The SEM images and mechanical results showed that alkali-treated BS presented a more favorable bonding interface in the cementitious matrix, while both compressive and flexural strength were higher than for the other two treatments. Hence, the alkaline treatment method was adopted for additional studies on the effect of BS content on the microstructural, physical, rheological, and mechanical properties of composite mortar. Cement was replaced by alkali-treated BS at 1%, 3%, 5%, and 7% by mass in the mortar mixture. An increased proportion of BS led to a delayed cement setting and a reduction in workability, but a lighter and more porous structure compared to the conventional mortar. Meanwhile, the mechanical performance of composite decreased with BS content, while the compressive and flexural strength ranged between 14.1 and 37.8 MPa and 2.4 and 4.5 MPa, respectively, but still met the minimum strength requirements of masonry construction. The cement matrix incorporated 3% and 5% BS can be classified as load-bearing lightweight concrete. This result confirms that recycled BS can be a sustainable component to produce a lightweight and structural bio-based cementitious material.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6080
Author(s):  
João Crucho ◽  
Luís Picado-Santos ◽  
Filipe Silva

The Azoreans rely on an extensive network of rural roads for the most of the rural population’s activities (primary sector) and accessibility. To rehabilitate and maintain this network, asphalt concrete and crushed rock aggregate are usually used. However, in the region, the application of such paving technology can be extremely costly. It requires specialized contractors, dedicated equipment and raw materials that must be imported to most of the islands. Therefore, the use of locally available materials would result in more flexibility and fewer costs for planned interventions. In the Azores, known as bagacina, the volcanic scoria is a pyroclastic material, generally highly abundant in volcanic islands. This natural aggregate is inexpensive, easy to extract, and presents good geotechnical characteristics. However, due to its porous nature, it generally does not comply with the current specifications for pavement materials. Therefore, this study aims to evaluate cement-treated volcanic scoria to be used as low-traffic road pavement layers. The geotechnical properties and mechanical performance of the two types of scoriae were analyzed. As a result, both types of scoriae presented good behavior, according to the expected for a cement-treated material, and proved to be a suitable alternative for road pavements in the Azores Archipelago.


2020 ◽  
Vol 27 (3) ◽  
pp. 45-60
Author(s):  
Muataz Nayel ◽  
Ammar Khazaal ◽  
Waleed Alabdraba

Recently, the constructions industry begins to make concrete more sustainable, side by side, with making its high performance. This paper aims to investigate the effect of (Metakaolin and Micro Silica) when they replace cement by (8, 12 and 16) % and (6, 9 and 12) % respectively, recycled steel slag when replaces fine aggregate by (10, 20 and 30) %, and recycled mosaic tiles when replaces coarse aggregate by (33.33, 66.67 and 100) % each one another on the slump, density, absorption and compressive strength of concrete. The experimental results showed that the maximum reduction ratio of cement reach (17%) (8% of metakaolin and 9% Micro Silica) while the optimum percentage of mosaic tiles and steel slag is (100%) and (20%) respectively. The optimum percentages obtained are combining to produce three basic green mixes: 1) 17% (8% of Metakaolin and 9% of Micro Silica) only, (2) A mix containing 17% of (Metakaolin and of Micro Silica) plus 100% of recycled mosaic, (3) 17% of (Metakaolin and Micro Silica), 100% of recycled mosaic and 20% of slag. Compressive strength at (7, 28, and 60) days, modulus of rupture at (28) days, absorption, fresh and hardened density are investigated. The best improvement in compressive strength compared with reference concrete was recorded (20.06, 10.855 and 9.983) % at (7, 28 and 60) days respectively for the mix containing (17% of cementitious materials plus 100% of recycled mosaic) while the ultimate flexure strength (24) % appeared in green mix containing (17% of cementitious materials, 100% of recycled mosaic and 20% of slag). Generally, an inverse relationship between density and absorption in all trail mixes which are conducted


2021 ◽  
Vol 8 ◽  
Author(s):  
Jingwei Li ◽  
Dong Xu ◽  
Xujiang Wang ◽  
Kun Wang ◽  
Wenlong Wang

With the vigorous development of infrastructure engineering, there are growing demands for high-performance rapid repair mortar, especially those using environmental-friendly and low-carbon cementitious materials. Hereupon, this work explored an innovative approach for rapid repair mortar preparation using solid waste-based calcium sulfoaluminate cement. The calcium sulfoaluminate cement was first prepared via synergetic–complementary use of industrial solid wastes and then adopted to prepare rapid repair mortar by proportionally mixing with standard sand and four additives (i.e., polycarboxylate superplasticizer, lithium carbonate, boric acid, and latex powder). The mechanistic analysis indicated that the four additives comprehensively optimized the mechanical strengths, fluidity, and setting time of rapid repair mortar by adjusting the hydration process of calcium sulfoaluminate cement. The test results showed that the 2-h compressive and flexural strength, and 1-day bonding strength of the prepared rapid repair mortar were 32.5, 9.2, and 2.01 MPa, respectively, indicating excellent early-age mechanical performance. In addition, the 28-day compressive and flexural strengths of the rapid repair mortar reached 71.8 and 17.7 MPa. Finally, a life cycle assessment and economic analysis indicated that this approach achieved environmental-friendly utilization of industrial solid wastes, and cost-effective and energy-saving natures, which supports current trends towards a circular economy and green sustainable development.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3220
Author(s):  
Shengchang Mu ◽  
Jianguang Yue ◽  
Yu Wang ◽  
Chuang Feng

Due to their excellent combination of mechanical and physical properties, graphene and its derivatives as reinforcements have been drawing tremendous attention to the development of high-performance and multifunctional cement-based composites. This paper is mainly focused on reviewing existing studies on the three material properties (electrical, piezoresistive and electromagnetic) correlated to the multifunction of graphene reinforced cement composite materials (GRCCMs). Graphene fillers have demonstrated better reinforcing effects on the three material properties involved when compared to the other fillers, such as carbon fiber (CF), carbon nanotube (CNT) and glass fiber (GF). This can be attributed to the large specific surface area of graphene fillers, leading to improved hydration process, microstructures and interactions between the fillers and the cement matrix in the composites. Therefore, studies on using some widely adopted methods/techniques to characterize and investigate the hydration and microstructures of GRCCMs are reviewed and discussed. Since the types of graphene fillers and cement matrices and the preparation methods affect the filler dispersion and material properties, studies on these aspects are also briefly summarized and discussed. Based on the review, some challenges and research gaps for future research are identified. This review is envisaged to provide a comprehensive literature review and more insightful perspectives for research on developing multifunctional GRCCMs.


Sign in / Sign up

Export Citation Format

Share Document